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Editorial on the Research Topic

Multi-omic Data Integration in Oncology

In the next few years, we are going to witness changes in the treatment of cancer patients due
to molecular and personalized medicine. Indeed, many hospitals are already starting routine
genome-wide screening to complement and inform diagnosis and treatment choices. However, the
majority of molecular aberrations identified in cancers have synergic interactions in many aspects
of cell signaling beyond the genome. The complexity of cancers cross cell boundaries especially
studying the tumor microenvironment as a heterogeneous and dynamic network of interacting
cells (1), one of the new hot topics for anticancer treatment development. In this scenario,
multi-omic technologies and single-cell data can shed light on these interactions by generating
high-throughput datasets portraying the genomes, transcriptomes, proteomes, metabolomes, and
epigenomes of tumors.

Large-scale cancer genomic projects, such as The Cancer Genome Atlas (TCGA) (2), have
generated petabytes of multi-omic data portraying this heterogeneity. Importantly, these data
have been made available to the scientific community, shifting the main challenge from data
collection to data analysis and integration, and allowing for development of novel data analysis
methods. However, while computational and statistical analyses of single-omics datasets are
well-established—excluding the still challenging single-cell data analyses—the integration of
multi-omic data is still far from being standardized. As the number of datasets grows and the
biological knowledge increases, existing methods should be extended or generalized, and new
computational tools need to be proposed to cope with the complexity and multi-level structure
of the available information. In this special issue, de Anda-Jáuregui and Hernández-Lemus
presented a comprehensive review of the state of the art of multi-omic data analysis in oncology,
encompassing a wide range of tasks, such as data acquisition and processing, data management,
identification of therapeutic targets, as well as patient classification, diagnosis, and prognosis.

One of the major challenges in the analysis of multi-omic data is how to integrate the
different data modalities. Nicora et al. reviewed a selection of recent tools for the computational
integration of multi-omic data sets based on: deep learning, network integration, data clustering or
factorization, and feature extraction or transformation. This emerging field has already contributed
a rich catalog of freely available tools: the most widely used approaches are network-basedmethods,
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but deep learning strategies are becoming increasingly popular.
In this context, Chierici et al. proposed a computational
framework for high-throughput data integration (called
Integrative Network Fusion, INF), which leverages network
structures and machine learning models to extract multi-omic
predictive biomarkers for cancer subtype identification. By
integrating gene expression, protein expression, and copy-
number data across three TCGA cancer types, INF showed
a higher predictive performance with respect to simple
juxtaposition of single-omics analyses and enabled the extraction
of more biologically meaningful biomarkers. INF was designed to
integrate an arbitrary number of omic layers, allowing to extend
the framework to other types of data, such as histopathological
and radiological images.

The main goal of most integrative methods is the
identification of multi-omic signatures that can be diagnostic
(healthy vs. disease), prognostic (good vs. poor patient
outcome), or predictive (good vs. poor response to therapeutic
interventions). The selection of the optimal signature size, that
is the number of molecular features needed to stratify patients,
is not trivial. In general, the smaller the signature size, the
easier its clinical applicability, but the lower its accuracy, due to
patients heterogeneity. In this perspective meta-analysis studies
that exploit data from previously published studies can increase
the signature robustness and reliability. Liu et al. combined
extensive text mining and transcriptomic data to identify and
validate a small prognostic signature in liver cancer. By selecting
more than thousand genes known to be involved in liver cancer
initiation and progression, they identified a triplet of genes
associated with survival. Using three independent cohorts and
specific experimental assays to confirm transcript and protein
expression levels, they found that low expression of F2, GOT2,
and TRPV1 is associated with poor prognosis in liver cancer. In
a parallel study, Li et al. identified a small diagnostic signature
composed of long non-coding RNAs (RP11-33A14.1, RP11-
423H2.3, and LAMTOR5-AS1) that, combined with clinical and
previously-published molecular biomarkers, is able to predict
prostate cancer from fine needle aspiration biopsies with high
sensitivity and specificity. Looking for potential molecular
functions of the signature elements, the authors suggested and
validated a sponge mechanism, that sees miR-7, miR-24-3p,
and miR-30 as the three main miRNAs sequestered by the long
non-coding RNAs, which in turn interact with the RNA binding
protein FUS.

While the identification of precise molecular signatures is
fundamental for clinical practice, the understanding of the
actual mechanisms driving these alterations in specific cancers
or cancer subtypes is crucial to design new pharmacological
treatments. Ochoa et al. investigated the regulatory elements
that drive the various expression behaviors of the PAM50
signature (3) in different breast cancer subtypes. The authors
integrated coding and non-coding gene expression, methylation
levels, and information on transcription factors (TF)-target
interaction data via a generalized elastic-net model. Using
breast tumors and normal adjacent tissues from the TCGA,
they identified both subtype-specific regulators and regulators
acting across subtypes, such as miR-21 and miR-10b. With a

similar aim, Tait et al. combine transcriptomic data to study the
expression patterns of non-coding elements (miRNAs and long
non-coding RNAs, ncRNA) underlying dysfunctional adipocyte
phenotype in obesity and colorectal cancer. The authors inferred
lncRNA-miRNA-mRNA modules, highlighting several ncRNA
modulations and dysregulated pathways that are common to
both obesity and colorectal cancer. Chen et al., using whole
exome and transcriptome sequencing, studied the genomic and
transcriptomic landscape of cholangiocarcinoma. The authors
investigated subnetworks that were greatly influenced by tumor
clonal or subclonal mutations impacting gene expression.

Immunotherapy with checkpoint blockers has drastically
advanced treatment of different types of cancer over the past
years, improving overall patient survival compared to standard
therapy. However, response to treatment remains hard to
predict due to the large intra- and inter-patient heterogeneity.
Lapuente-Santana and Eduarti reviewed the benefit of multi-
omic approaches for biomarker discovery in the immuno-
oncology field. They present multi-omic approaches that could
help understand how different immune cell types can influence
the efficacy of immunotherapy with checkpoint blockers and
how the cells interact in the tumor microenvironment, shaping
the immune response, and resistance to immunotherapy. The
authors suggest that a combination of dynamic mathematical
models and longitudinal data could further improve our
understanding of the tumor microenvironment role in the
response to immunotherapy and provide the rationale for
alternative personalized treatments.

Another field that recently had a boost from multi-
omic integration strategies is pharmacogenomics. The term
pharmacogenomics is generally used to define the variability
of drug response due to the patients’ genomic landscape. In
this context, cancer cell lines have been the most widely used
models to explore the molecular basis of drug sensitivity.
Starting from the first NCI-60 project (4), several other studies
investigating the link between the genomic makeup and drug
response in cancer cell lines have been carried out (5–7). Caroli
et al. reviewed the databases and computational tools that have
been developed to integrate cancer cell lines genomic profiles
and sensitivity to small molecule perturbations obtained from
different screenings.

Multimodal omics can be integrated in silico to respond
to complex biological questions that require a systems biology
approach. One of such examples is the prediction of tumor
neoantigens, namely mutated peptides that are bound to the
major histocompatibility complex molecules of cancer cells and
can elicit anticancer immune responses. Schrörs et al. derived an
integrated map of the genome, transcriptome, and neoantigen
landscape of one of the most widely used breast cancer models:
the 4T1 murine mammary cancer cell line. They found that
4T1 cells share molecular features with triple-negative breast
cancer and, thus, represent a promising model for preclinical
studies. Moreover, the authors confirmed experimentally the
antigenic potential of 23 mutated peptides selected from the pool
of neoantigens predicted in silico using IFNγ-ELISpot assays.

Despite their recognized value to advancing and informing
immuno-oncology and precision medicine, standard “bulk”
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technologies are intrinsically limited by the sequencing of
heterogeneous cell mixtures, which renders a blended average
portrayal of the tumor microenvironment. Rapidly-emerging
single-cell technologies allow to disentangle the phenotypes
of individual cells, providing unprecedented insights into the
cellular and spatial diversity of the tumor microenvironment.
However, the sparsity, noise, and high-dimensionality of single-
cell data pose unique challenges to data analysis. Hsu and
Culhane provide a guide to dimensionality reduction techniques
that are vital to extract the major sources of variations
from single-cell RNA-sequencing data prior to performing
downstream data integration, clustering and analysis. The
authors focused on principal component analysis (PCA), amatrix
factorization method that can easily scale to large datasets
when used with sparse-matrix representations; they described its
relationship with singular value decomposition, the differences
between using correlation or covariance matrices, the impact of
data scaling, log-transformation, and standardization, and how
to recognize artifacts in PCA plots. Moreover, they described how
canonical correlation analysis (CCA), another popular matrix
factorization approach, can be used to integrate single-cell data
from different platforms or studies.

Despite their promise, single-cell technologies, such as flow
cytometry, mass cytometry, or single-cell RNA sequencing,
are still limited by the lack of information on spatial
context and multicellular interactions. de Vries et al. show
how multimodal and spatially-resolved single-cell data can
advance our understanding of the inter-cellular organization and
communication in the tumor microenvironment. They present
recent developments in spatial, tissue-based techniques, such
as multiparameter fluorescence, imaging mass cytometry, and
in situ transcriptomics, as well as, multidimensional single-
cell technologies and studies that integrate multiple single-
cell modalities to disentangle complex cell interactions in the
tumor microenvironment. These approaches hold the promise to
uncover the sources of intra-tumor heterogeneity that hamper
cancer treatment but require the development of dedicated
bioinformatic tools for the data analysis and interpretation
and tight collaboration between oncologists, immunologists,
pathologists, and bioinformaticians for the extraction of
mechanist rationales and actionable targets.

Overall, our collection of original research articles and reviews
covers a wide range of multi-omic applications in oncology.

The scenario that emerges is that transcriptomics, methylomics,
and genomics are the three most frequently analyzed and
integrated data, both in bulk and single-cell studies. To fully
understand the complex interactions of the molecular processes
underlying cellular mechanisms a fine temporal and spatial
resolution is required. Spatial transcriptomics (8), a set of
techniques that allow the (sub-) cellular characterization of gene
expression, has the potential to unveil the complex interplay
between cell types but gives rise to new computational and
statistical challenges, also in terms of data integration. In
addition, important information can be exploited by integrating
omics data and biomedical images (9), a field that is experiencing
new advances in terms of sensitivity and resolution. Multi-
modal integrative analysis will soon become the standard
to study complex systems, and we look forward to exciting
new computational developments to tackle data heterogeneity,
computational efficiency and results interpretation, and can
ultimately push the oncology field forward.
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Prostate cancer (PCa) is one of the most common tumors in men and can be lethal,
especially if left untreated. A substantial majority of PCa patients not only are diagnosed
based on fine needle aspiration (FNA) biopsies, but their treatment choices are also largely
driven by the pathological findings obtained with these FNA specimens. It is widely
believed that lncRNAs have strong biological significance, but their specific functions and
regulatory networks have not been elucidated. LncRNAs may serve as key players and
regulators of PCa carcinogenesis and could be novel biomarkers of this cancer. To identify
potential markers for early detection of PCa, in this study, we employed a competing
endogenous RNA (ceRNA) microarray to identify differentially expressed lncRNAs
(DelncRNAs) in PCa tissue and quantitative real-time PCR (qRT-PCR) analysis to
validate these DelncRNAs in FNA biopsies. We demonstrated that a total of 451
lncRNAs were differentially expressed in four pairs of PCa/adjacent tissues, and
upregulation of the lncRNAs RP11-33A14.1, RP11-423H2.3, and LAMTOR5-AS1 was
confirmed in FNA biopsies of PCa by qRT-PCR and was consistent with the ceRNA array
data. The association between the expression of the lncRNA LAMTOR5-AS1 and
aggressive cancer was also investigated. Regulatory network analysis of DelncRNAs
showed that the lncRNAs RP11-33A14.1 and RP11-423H2.3 targeted miR-7, miR-24-
3p, and miR-30 and interacted with the RNA binding protein FUS. Knockdown of these
DelncRNAs in PCa cells also demonstrated the effects of RP11-423H2.3 on miR-7/miR-
24/miR-30 or LAMTOR5-AS1 on miR-942-5p/miR-542-3p via direct interaction. The
results of these studies indicate that these three specific lncRNA signatures and regulatory
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networks might serve as risk prediction and diagnostic biomarkers for prostate cancer,
even in biopsies obtained by FNA.
Keywords: prostate cancer, long non-coding ribonucleic acid, regulatory networks, fine needle aspiration biopsies,
microribonucleic acid, ribonucleic acid binding proteins, biomarker
INTRODUCTION

Prostate cancer is the second most common tumor among men
worldwide, leading to the highest morbidity and mortality along
with lung and bronchial cancer. In 2018, the incidence of
prostate cancer (PCa) among all new cancer cases was 19%,
and in the USA, ~29,000 men died from prostate cancer (Siegel
et al., 2017; Siegel et al., 2018), which is usually diagnosed at a
localized stage by the combination of prostate-specific antigens
(PSAs), magnetic resonance imaging (MRI), digital rectal
examination (DRE), and transrectal ultrasound (TRUS)-guided
biopsy (Carroll et al., 2018); most panel members favor informed
testing beginning at the age of 45 years. Despite these detection
methods and systemic therapies, including radiation therapy,
prostatectomy, androgen deprivation therapy, immunotherapy,
and chemotherapy (Mohler et al., 2018), several patients are still
diagnosed at a late stage of development (Siegel et al., 2018).
Moreover, while PCa remains indolent in most individuals, in a
minority of patients, PCa behaves aggressively. PSA, which is the
most common prostatic marker, has a high specificity for
prostate cancer, but its expression cannot be detected in ~5%
of patients with high-grade PCa (Epstein, 1993; Van Der Toom
et al., 2019) or, conversely, leads to the overdiagnosis of clinically
insignificant cancer (Tan et al., 2019). Thus, biomarkers that
accurately diagnose prostate cancer and, more importantly,
differentiate indolent from life-threatening prostate cancer are
urgently required.

Noncoding RNAs (ncRNAs) play key roles in cancer
progression and could be used to develop novel biomarkers of
prostate cancer (Shan et al., 2017; Xia et al., 2018). Answering the
many unknown questions regarding ncRNAs' participation in
prostate cancer progression, such as how ncRNAs participate in
many pathological processes leading to the development of
prostate cancer, how they significantly interact with proteins,
and the degree of their specificity and ease of detection in tissues,
serum, plasma, and urine could lead to the development of novel
biomarkers of this aggressive cancer. In our previous studies, we
e; BPH, benign prostatic hyperplasia;
EGs, differentially expressed genes;
As; DRE, digital rectal examination;
eedle Aspiration; FPG, fasting plasma
slocated in liposarcoma; GEO, gene
noncoding RNAs; MRI, magnetic
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demonstrated that four differentially expressed genes (TGBL1,
HOXA7, KRT15, and TGM4) in FNA biopsies could facilitate
the diagnosis of prostate cancer, which was significantly
improved over PSA (Shan et al., 2017), and we found that
di fferent ia l ly expressed circular RNAs (circRNAs)
(circ_0062019 and circ_0057558) and the host gene SLC19A1
of circ_0062019 could be used as potential novel biomarkers of
PCa (Xia et al., 2018). Long noncoding RNAs (lncRNAs) are
currently defined as RNA transcripts longer than 200 nucleotides
that do not appear to code proteins but control cell fate during
development through complex mechanisms, and their
dysregulation underlies some human disorders caused by
chromosomal deletions and translocations (Batista and Chang,
2013). LncRNAs include several types of RNA transcripts, such
as antisense, intronic, and intergenic transcripts, pseudogenes,
and retrotransposons (Lee, 2012), which are more cell type-
specific than protein-coding genes, and their aberrant expression
has been documented in various cancers, including PCa (Hon
et al., 2017; Misawa et al., 2017). LncRNAs were found to be
involved in prostate carcinogenesis by mediating enhancer-
promoter looping, alternative splicing, and antisense gene
silencing, antagonizing transcription regulators and repressing
DNA repair (Walsh et al., 2014). For example, the lncRNA
SChLAP1 promotes aggressive PCa mechanistically by impairing
the SWI/SNF axis-mediated regulation of their gene expression
and genomic binding (Prensner et al., 2013). The lncRNA
NEAT1, which is regulated by estrogen receptor alpha (ERa),
drives an oncogenic cascade in PCa and is associated with
therapeutic resistance (Chakravarty et al., 2014). The lncRNA
HOTAIR increases the androgen receptor-mediated
transcriptional program and promotes the growth of
castration-resistant prostate cancer (Zhang et al., 2015). Other
lncRNAs, such as lncRNA ZEB1-AS1 (Su et al., 2017) and
lncRNA HOXD-AS1 (Gu et al., 2017), can also regulate cell
proliferation and chemoresistance as oncogenes. However, some
lncRNAs, such as lncRNA TUG1 and lncRNA CTB-89H12.4,
can mediate sponge regulatory networks as tumor suppressors
(Du et al., 2016). Preclinically, the interfering lncRNA MALAT1
can suppress enzalutamide-resistant PCa progression (Wang
et al., 2017b). Therefore, lncRNAs play multifaceted roles in
PCa and may serve as risk prediction, diagnostic, prognostic, and
predictive biomarkers of PCa.

In this study, we applied a competing endogenous RNA
(ceRNA) microarray to identify differentially expressed
lncRNAs in PCa tissue. Through further validation of the most
differentially expressed lncRNAs in prostate biopsy tissues, we
found that three lncRNAs, i.e., RP11-33A14.1, RP11-423H2.3,
and LAMTOR5-AS1, and their regulatory networks may serve as
novel diagnostic biomarkers of PCa.
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MATERIALS AND METHODS

Cell Lines and Cell Culture
The prostate cancer cell lines 22Rv1 (ATCC No. CRL-2505),
DU145 (ATCC No. HTB-81), LNCaP (ATCC No. CRL-1740),
and PC3 (ATCC No. CRL-1435) were purchased from the
Culture Collection of the Chinese Academy of Sciences,
Shanghai, China (http://www.cellbank.org.cn/). DU145 and
PC3 were cul tured in MEM (Cat# : 41500034, Li fe
Techno log i e s ) and F-12 (GIBCO, 21700075 , L i f e
Technologies), respectively; LNCaP and 22Rv1 were
main t a ined in RPMI-1640 (Ca t # : 31800022 , L i f e
Technologies) supplemented with 10% fetal bovine serum
(FBS) (Thermo Fisher Scientific, Waltham, MA, US) at 37°C
in 5% CO2. The human prostatic epithelial cell lines (HPEpic)
were purchased from Shanghai Xinyu Biological Technology
Co., Ltd. All cells were cultured according to the ATCC
standard procedure.

Prostate Tumor and Benign Prostatic
Hyperplasia Tissue Samples
Four pairs of fresh prostate tumor and paracancerous tissues and
105 cases of prostate tissues on fine needle biopsies (FNA),
including 48 cases of PCa tissues and 57 cases of benign prostatic
hyperplasia (BPH) tissues, were acquired from Zhongshan
Hospital Affiliated with Fudan University. This research was
approved by the Ethics Committee of Zhongshan Hospital
Affiliated with Fudan University and Shanghai Public Health
Clinical Center. Written informed consent was obtained from all
patients for the use of their tissue samples and clinical records.
Each tissue was confirmed by a pathologist specializing in
prostate cancer, and a Gleason score was provided for the risk
stratification. All samples were stored at −80°C after
surgical resection.

Ribonucleic Acid Purification, Competing
Endogenous Ribonucleic Acid Microarray,
and Data Analysis
Total RNA was extracted and purified using TRIzol reagent
(Invitrogen, Carlsbad, CA, US) and an RNeasy Mini Kit
(QIAGEN, GmBH, Germany) following the manufacturer's
instructions. The total RNA was quantified by a NanoDrop
2000 spectrophotometer (NanoDrop, US) and selected by
limiting the 260/280 nm absorbance ratio of the samples to
1.8–2.0. The selected RNA samples were assessed by an Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, US) to
inspect the RNA integrity. Four pairs of prostate tumor and
paracancerous tissues were used for the microarray assay to
investigate the differentially expressed lncRNAs between the
cancer tissues and paracancerous tissues (Xia et al., 2018). The
total RNA was amplified and labeled by a Low Input Quick Amp
WT Labeling Kit (Santa Clara, CA, US) and labeled by Cy3-
labeled CTP with T7 RNA polymerase. The labeled cRNAs were
purified by an RNeasy Mini Kit (QIAGEN, GmBH, Germany)
and loaded onto SBC human (4*180 K) ceRNA microarrays,
including 68,423 ncRNAs, 88,371 circRNAs, and 18,853
Frontiers in Genetics | www.frontiersin.org 311
messenger RNAs (mRNAs) (Shanghai Biotech Co., Ltd.,
Shanghai, China). The microarray hybridization was
performed following the manufacturer's standard protocols
using a Gene Expression Hybridization Kit (Santa Clara, CA,
US) in a hybridization oven (Santa Clara, CA, US). The
hybridized slides were washed, fixed, and finally scanned to
obtain images using an Agilent Microarray Scanner (Agilent
Technologies, Santa Clara, CA, US). The data were extracted
with Feature Extraction software 10.7 (Agilent Technologies,
Santa Clara, CA, US), and the raw data were normalized by the
quantile algorithm in the limma package in R. The significantly
differentially expressed lncRNAs between the prostate cancer
and paracancerous tissues were identified and retained by
screening for fold change > 2.0 at p < 0.05. The prostate
cancer microarray datasets were deposited in the Gene
Expression Omnibus (GEO) database under accession
number GSE140927.

Regulatory Network Analysis of Differential
Long Non-Coding Ribonucleic Acids and
Microribonucleic Acids in Prostate Cancer
For an integrative analysis of prostate cancer-specific
differentially expressed lncRNAs and miRNAs, we searched the
GEO database for miRNA expression profiling studies related to
prostate cancer. The two miRNA expression datasets were
downloaded from the National Center for Biotechnology
Information GEO database (GSE76260 and GSE36802). All
patients ' records/information were anonymized and
deidentified prior to the analysis. In total, 106 prostate clinical
specimens (53 cancer and 53 non-neoplastic tissues/matched
benign prostate tissues) were collected from GEO to create the
data downloaded from 47 patients with prostate cancer in two
different platforms, including an Affymetrix Multispecies
miRNA-1 Array and Illumina Human v2 MicroRNA
Expression BeadChip. We applied unpaired Student's t-tests to
determine the expression differences between the groups. The
differential expression values are displayed as a log of the fold-
change. All analyses were performed with R statistical software.
We predicted the candidate genes targeted by these miRNAs
based on TargetScan (Whitehead Institute for Biomedical
Research, Cambridge, MA, US) (Lewis et al., 2003) or
miRecords (LC Sciences, Houston, TX, US) (Xiao et al., 2009).
We also applied GEO2R to determine the involvement of
dysregulated miRNAs in PCa and used the microRNA.org
databases and the hypergeometric method to calculate the p-
values in the miRNA target analysis. Furthermore, we analyzed
the potential target microRNAs (miRNAs) of the differential
lncRNAs online (http://www.mircode.org). To understand the
protein-lncRNA interactions of the differentially expressed
lncRNAs, we constructed a lncRNA-mRNA network based on
the transcripts. By analyzing the possible combination of
lncRNAs and mRNAs, we predicted the target mRNAs of the
differentially expressed lncRNAs (http://starbase.sysu.edu.cn/
starbase2/) (Li et al., 2014) and generated a lncRNA-mRNA
regulatory network map by Cytoscape3.5.1 software (Shannon
et al., 2003).
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Knockdown of Differentially Expressed
Long Non-Coding Ribonucleic Acids in
Prostate Cancer Cells
We applied si-RP11-423H2.3 and si-LAMTOR5-AS1 to knock
down the expression of RP11-423H2.3 and LAMTOR5-AS1 in the
prostate PC3 and DU145 cancer cells (the target sequence of
RP11-423H2.3 was AAGGACAGCTTGCCTGACT; the target
sequence of LAMTOR5-AS1 was CTGGTCTACTGTCACA
ACA; and siRNA-GFP was the control). All siRNAs were
designed and synthesized by Ribobio (Guangzhou, China). qRT-
PCR was applied to validate the transfection efficiency and
expression level of relevant lncRNAs and target miRNAs. The
siRNA with the best transfection efficiency was selected for
subsequent experiments. Prostate PC3 and DU145 cancer cells
were transfected with siRNAs at a concentration of 50 nM using 5
µl of Lipofectamine 3000 (Invitrogen, CA, US) according to the
manufacturer's protocol.

Quantitative Real-Time Polymerase Chain
Reaction Analysis
Total RNA was isolated from 105 clinical specimens and prostate
cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). In
total, 600 ng of total RNA per sample was used for
complementary DNA (cDNA) synthesis using a PrimeScript™
RT Reagent Kit with gDNA Eraser (Takara, Cat#: RR047A,
Japan). Real-time quantitative reverse transcription PCR (qRT-
PCR) was performed with SYBR Premix Ex Taq™ II (Takara,
Cat#: RR820A, Japan) using the LightCycler 480 II Instrument
(Roche Molecular Systems, Inc). We performed qRT-PCR in a
total reaction volume of 10 ml, including 5 ml of 2 x SYBR Green
PCR buffer, 0.4 ml of forward primer (10 mM), 0.4 ml of reverse
primer (10 mM), 0.2 ml of ROX Reference Dye II, 3.5 ml of
ddH2O, and 15 ng of cDNA. The reaction was initiated at 95°C
for 1 min followed by 95°C (5 s) and 60°C (30 s) for 40 cycles.
The expression of the lncRNAs was normalized to the level of
18S. The specific primers of the lncRNAs, miRNAs, and 18S are
presented in Table S1. The data were collected and analyzed
using the 2−DDCt method.

Immunoblots
Prostate PC3 and DU145 cancer cells were transfected with si-
RP11-423H2.3, si-LAMTOR5-AS1, or siRNA-GFP (si-Control)
using Lipofectamine 3000 (Invitrogen, CA, US) according to the
manufacturer's protocol. After 72 h, protein samples were lysed in
radioimmunoprecipitation assay (RIPA) buffer supplemented
with protease inhibitors. Thirty micrograms of total protein
were loaded per lane separated on a 10% sodium dodecyl
sulfate (SDS)-polyacrylamide gel by electrophoresis, and
proteins transferred onto nitrocellulose membranes. The
membranes were blocked with 5% milk in phosphate buffered
saline with tween 20 (PBST) and then incubated with a rabbit
anti-UPF1 (Cat#: D161327, BBI Solutions) or rabbit anti-FUS
(Cat#: D223360, BBI Solutions), or b-actin (N-21) rabbit
polyc lonal ant ibody (Cat# : sc-130656, Santa Cruz
Biotechnology, Inc) at 4°C overnight. After washing with PBST,
the blots were treated with a horseradish peroxidase (HRP)
Frontiers in Genetics | www.frontiersin.org 412
conjugated anti-rabbit IgG. Detection of blots was performed
using Meilunbio® fg super sensitive ECL luminescence reagent
(Dalian Meilun Biotechnology Co., Ltd.) (Zhang et al., 2019).

Statistical Analyses
We collected clinical data from 105 prostate tissues, and a
Student's t-test was used to analyze the differences in lncRNA
expression between the prostate cancer group and BPH group. A
Pearson correlation analysis was used to investigate the
relationship between the differential lncRNAs and clinical
parameters. The results were regarded as statistically significant
at p < 0.05. All graphs were generated using GraphPad Prism 7.0
software (GraphPad Software Inc., La Jolla, CA, USA). The
statistical analysis was performed using SPSS 22.0 (IBM-SPSS
Inc., Chicago, IL, USA). Receiver operating characteristic (ROC)
curves were applied to evaluate the clinical diagnostic value of the
differential lncRNAs and the combination of PSA and lncRNAs.
RESULTS

Differential Profiling of Long Non-Coding
Ribonucleic Acids in Prostate Cancer
To identify potential biomarkers of PCa, we first performed
ceRNA microarray profiling of PCa patients and detected many
transcripts in the PCa and adjacent normal tissues. We collected
four pairs of tumor/adjacent normal tissue paraffin specimens
and applied a ceRNA microarray to detect the transcripts in the
PCa and adjacent normal tissues (Xia et al., 2018). A heatmap
(Figure 1A) and scatter plots (Figure 1B) of the differential
lncRNAs between the PCa tissues and normal tissues are shown
in Figure 1. The heatmap indicates that 451 lncRNAs (Figure
1A) were differentially expressed with a fold change > 2.0 at p <
0.05. Among these lncRNAs, 217 lncRNAs were upregulated,
and 234 lncRNAs were downregulated, in four pairs of PCa/
adjacent tissues (Table 1). Among the differentially expressed
lncRNAs, the most upregulated lncRNA is LINC00675, and the
most downregulated lncRNA is RP11-864N7.4.

Validation of Key Differentially Expressed
Long Non-Coding Ribonucleic Acids
(RP11-33A14.1, RP11-423H2.3, and
LAMTOR5-AS1) Using Fine Needle
Aspiration Samples
We further carried out a qRT-PCR analysis of the related
differential lncRNAs, including RP11-33A14.1, RP11-423H2.3,
LAMTOR5-AS1, LINC00675, RP11-118K6.2, and RP11-
423H2.3, in the normal prostate cell line HPEpic, PCa cells
(22Rv1, DU145, LNCaP, and PC3 cells), and 105 FNA prostate
tissues (48 PCa tissues and 57 BPH tissues) (Figure S1). The
results revealed that the lncRNAs RP11-33A14.1 (Figure 2A),
RP11-423H2.3 (Figure 2B), and LAMTOR5-AS1 (Figure 2C)
were upregulated in the four PCa cells. We further validated
these lncRNAs in 48 PCa tissues and 57 BPH tissues. The results
showed that in the PCa tissues, the lncRNAs RP11-33A14.1,
RP11-423H2.3, and LAMTOR5-AS1 were upregulated by
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11.12 ± 3.66-fold (Figure 2D), 4.44 ± 1.87-fold (Figure 2E), and
1.89 ± 0.76-fold (Figure 2F), respectively (p < 0.05), further
confirming the results of our ceRNA microarray.

Differentially Expressed Long Non-Coding
Ribonucleic Acids as Novel Biomarkers of
Prostate Cancer Associated With
Prostate-Specific Antigens Levels and the
Progression of Prostate Cancer
We assessed the diagnostic effectiveness of the differential
lncRNAs in differentiating between PCa and BPH tissues by an
Frontiers in Genetics | www.frontiersin.org 513
ROC curve (Figure 3). The areas under the curve (AUCs) of
lncRNAs RP11-33A14.1, RP11-423H2.3, and LAMTOR5-AS1
were 0.697, 0.620, and 0.641, respectively (Figure 3 and Table
2). When the three differential lncRNAs were combined, the
AUC was 0.754 (Figure 3D). We further analyzed the PSA
level using the results of the 3 differential lncRNAs, and the
AUC was 0.984. The sensitivity was 97.9%, and the specificity
was 84.2% (Figure 3E). To clarify the characteristics of these
differential lncRNAs in PCa, we applied a Pearson correlation
analysis to analyze the correlation between these lncRNAs and
the corresponding clinical parameters. As shown in Table 3,
FIGURE 1 | Heatmap and scatter plots of differential long non-coding RNAs (lncRNAs) in prostate tumor tissues and normal tissues. (A) Heatmap of differential
lncRNAs; (B) scatter plots of differential lncRNAs.
TABLE 1 | Top 10 of the differentially expressed long non-coding ribonucleic acids (lncRNA) in prostate cancer (PCa) (cancer/paracancerous tissue).

Accession Gene symbol Relation Fold change P values FDR

NR_036581 LINC00675 intergenic 7.58 0.045 0.59
ENST00000439575 RP11-118K6.2 intergenic 7.41 0.023 0.55
ENST00000609245 LAMTOR5-AS1 intergenic 7.30 0.001 0.47
ENST00000414475 RP11-33A14.1 intergenic 6.96 0.049 0.59
lnc-NTM-4:1 — intergenic 6.27 0.030 0.55
ENST00000503263 RP11-423H2.3 intergenic 5.46 0.024 0.55
ENST00000366189 RP11-423H2.3 intergenic 5.13 0.047 0.59
lnc-KAZALD1-1:1 — intronic_sense 5.11 0.044 0.59
ENST00000605909 RP11-16D22.2 intergenic 4.71 0.012 0.51
ENST00000623288 RP11-423H2.4 intergenic 4.51 0.032 0.56
ENST00000371162 MIR4435-1HG intergenic −3.76 0.018 0.53
lnc-PRICKLE2-6:1 — exonic_sense −3.79 0.041 0.58
lnc-AC079135.1.1-8:1 — exonic_sense −3.92 0.032 0.56
lnc-ZDHHC13-5:1 — exonic_sense −4.19 0.027 0.55
ENST00000451884 MIR4435-1HG intergenic −4.19 0.003 0.47
lnc-JPH2-1:1 — exonic_sense −4.54 0.009 0.50
lnc-C15orf54-4:2 — exonic_sense −4.59 0.010 0.50
lnc-TPD52L3-1:1 — exonic_sense −5.31 0.013 0.51
NONHSAT018709 — exonic_sense −6.45 0.015 0.51
ENST00000624759 RP11-864N7.4 intronic_sense −15.56 0.025 0.55
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FIGURE 2 | Quantitative real-time (qRT)-PCR analysis of the gene expression levels of lncRNAs (RP11-33A14.1, RP11-423H2.3, and LAMTOR5-AS1) in prostate
cells and tumor tissue fine needle aspiration (FNA) samples. RP11-33A14.1 (A, D), RP11-423H2.3 (B, E), and LAMTOR5-AS1 (C, F) in prostate cells (A–C), and
tumor tissue samples compared to benign prostatic hyperplasia (BPH) tissue samples (D–F).
FIGURE 3 | ROC curve showing expression levels of differentially expressed long non-coding RNAs (DelncRNAs). LncRNA RP11-33A14.1 (A), RP11-423H2.3
(B), and LAMTOR5-AS1 (C) in prostate cancer (PCa) patients and benign prostatic hyperplasia (BPH) controls; the three lncRNAs combination (D); prostate-
specific antigen (PSA) only (E); and the three lncRNAs and PSA combination (F). The receiver operating characteristic (ROC) curves were analyzed using
univariate (log-rank) analysis.
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the lncRNA LAMPOR5-AS1 is positively correlated with the
PSA level of the patients (p < 0.001). A combined Gleason
score of 6 or 7 indicates that PCa is likely to grow but may not
spread quickly. A score of 8–10 is suggestive of aggressive
prostate cancer that is potentially lethal [24]. In this study, we
investigated the association between the expression of lncRNA
LAMTOR5-AS1 and aggressive cancer (Gleason score 8–10,
p < 0.05) (Table 4) and found that lncRNA LAMTOR5-AS1
expression was higher in the less aggressive PCa (Gleason
score 6–7; GS6-7) than in the aggressive PCa (Gleason score
8–10; GS8-10), yet its expression in GS8-10 was higher than in
Frontiers in Genetics | www.frontiersin.org 715
non-cancer tissues (p = 0.023) (Figure S2), which indicated
that LAMTOR5-AS1 might be useful in the early diagnosis
of PCa.

Regulatory Network Analysis of
Differentially Expressed Long Non-Coding
Ribonucleic Acids, Their Target
Microribonucleic Acids, and Their
Interaction With Ribonucleic Acids Binding
Protein in Prostate Cancer
Subsequently, we predicted the miRNAs likely to be targeted
by these three lncRNAs. In total, 100 miRNAs with binding
sites for lncRNA RP11-33A14.1 and 47 miRNAs with binding
sites for lncRNA RP11-423H2.3 were selected for subsequent
analysis (Figures 4A, B). We also analyzed the miRNA
expression profiles of GSE76260 and GSE36802 from the
GEO databases. The microarray dataset GSE76260 included
32 prostate cancer and 32 non-neoplastic tissue samples;
GSE36802 included 21 pairs of prostate cancer samples and
matched benign prostate tissues. We identified 53 miRNAs
that were differentially expressed between the prostate cancer
tumor tissue and the normal controls. We found that
compared with the normal controls, 28 miRNAs were
upregulated (Figure 4A), and 25 miRNAs were repressed in
the prostate cancer tissue samples (Figure 4B) in the two GEO
datasets. Taken together, these results indicate that miR-7
predicted from lncRNAs RP11-33A14.1 and RP11-423H2.3
was upregulated in the prostate cancer tumor tissue in the two
GEO datasets (Figure 4A). In contrast, two miRNAs (miR-24
and miR-30c) predicted from the two lncRNAs were repressed
in the prostate cancer tumor tissue in the two GEO datasets
(Figure 4B). Furthermore, we found that lncRNAs RP11-
33A14.1 and RP11-423H2.3 both target miR-7, miR-24-3p,
and miR-30 (Figure 4C). However, we only obtained two
predicted miRNAs (miR-542-3p and miR-30c) for
LAMTOR5-AS1 if we combined these two GEO datasets and
utilized the miRDB database to identify target miRNAs. Next,
we applied three reference datasets, DIANA-TarBase (http://
www.microrna.gr/tarbase) (Karagkouni et al. , 2018),
lncRNASNP2 (http://bioinfo.life.hust.edu.cn/lncRNASNP/
#!/mirna/), and miRDB (http://www.mirdb.org/), to predict
the targeted miRNAs of LAMTOR5-AS1 and overlapped the
three predicted results. Furthermore, we selected the top
miRNAs (miR-550b-3p, miR-942-5p, miR-542-3p, miR-
7162-3p, miR-4653, miR-3921, and miR-181b-3p) (Table
S3) with the highest context scores (score > 70 in two
predicted datasets) to establish a lncRNA-miRNA network
for LAMTOR5-AS1 (Figure 4C). Finally, we analyzed the
regulatory networks of lncRNAs RP11-33A14.1, RP11-
423H2.3, and LAMTOR5-AS1 and predicted their potential
RNA binding proteins (RBPs) using the starBase database. We
found that lncRNAs RP11-423H2.3 and LAMTOR5-AS1
shared common RBPs, including eIF4AIII, U2AF65, and
UPF1. More intriguingly, lncRNAs RP11-33A14.1, RP11-
423H2.3, and LAMTOR5-AS1 interact with the same RBP
FUS (Figure 4D).
TABLE 3 | Association between the differential long non-coding ribonucleic
acids (lncRNAs) and clinical parameter in prostate cancer (PCa) patients.

Clinical parameter RP11-33A14.1,
r (P)*

RP11-423H2.3,
r (P)*

LAMTOR5-AS1,
r (P)*

Age 0.165 (0.094) 0.324 (0.001) 0.258 (0.008)
PSA 0.025 (0.799) 0.347 (0.000) 0.803 (0.000)
Cholesterol (TC) −0.158 (0.281) −0.196 (0.370) −0.299 (0.166)
Triglyceride (TG) −0.161 (0.463) 0.021 (0.924) −0.215 (0.324)
Fasting plasma
glucose (FPG)

0.003 (0.990) 0.455 (0.077) −0.179 (0.506)

Gleason score 0.020 (0.941) −0.247 (0.091) 0.243 (0.096)
*Bold values denote statistical significance at the p < 0.05 level.
TABLE 4 | Association between the differential long non-coding ribonucleic
acids (lncRNAs) and aggressive prostate cancer (PCa).

Histologic
diagnosis

lncRNA
(mean ± SD)

RP11-33A14.1 RP11-423H2.3 LAMTOR5-AS1

Aggressive cancer
(Gleason score 8–10)

1.19 ± 1.48 3.58 ± 6.23 1.92 ± 2.10

Less aggressive
cancer (Gleason
score 6–7)

1.55 ± 1.46 4.61 ± 8.12 3.42 ± 3.01

p-value 0.414 0.653 0.038
*Bold values denote statistical significance at the p < 0.05 level.
TABLE 2 | ROC analysis of the diagnostic efficiency of differential long non-
coding ribonucleic acids (lncRNAs) (RP11-33A14.1, RP11-423H2.3, and
LAMTOR5-AS1) and serum prostate-specific antigen (PSA) in prostate cancer
(PCa) patients and benign prostatic hyperplasia (BPH) controls.

Biomarker Sensitivity
(%)

Specificity
(%)

AUC (95% CI) P-value

RP11-33A14.1 60.4 70.2 0.697 (0.506–0.734) 0.001
RP11-423H2.3 56.2 61.4 0.620 (0.506–0.734) 0.035
LAMTOR5-AS1 58.3 64.9 0.641 (0.531–0.751) 0.013
LAMTOR5-AS1 +
RP11-33A14.1
+RP11-423H2.3

77.1 63.2 0.754 (0.655–0.854) <0.001

PSA 95.8 84.2 0.974 (0.946–0.998) <0.001
LAMTOR5-AS1 +
RP11-33A14.1
+RP11-423H2.3 +
PSA

97.9 84.2 0.984 (0.964–1.004) <0.001
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DISCUSSION

Prostate cancer is one of the most common cancers in men and
ranges from low risk states amenable to active surveillance to
high-risk states that can be lethal, especially if left untreated
(Eskra et al., 2019). Although the diagnosis cornerstone of PCa
has been prostate-specific antigen levels and numerous
biomarkers have been introduced over the past decade, there is
still a critical need for the development of relatively noninvasive
and clinically useful methods for the screening, detection,
prognosis, disease monitoring, and prediction of treatment
efficacy of PCa.

Noncoding RNAs (ncRNAs) are typically classified into
small and lncRNAs based on their size ranges of <200 or
>200 nucleotides, and these RNAs are actively transcribed to
a versatile group of RNA transcripts without protein-coding
potential (over 80% of the genome) (Kapranov et al., 2007;
Djebali et al., 2012). The dysregulation of lncRNAs has been
implicated in the development and progression of a variety of
cancers (Das et al., 2019). However, notably few lncRNAs have
been functionally characterized and experimentally validated in
PCa. In this study, the lncRNAs RP11-33A14.1, RP11-423H2.3,
and LAMTOR5-AS1 were found to be upregulated in FNA
biopsies of PCa. Several members of the lncRNA RP11 family
are related to malignancies, including glioblastoma, renal cell
carcinoma, and colorectal cancer. The lncRNA RP11-838N2.4
Frontiers in Genetics | www.frontiersin.org 816
enhances the cytotoxic effects of temozolomide by inhibiting
the functions of miR-10a in glioblastoma cell lines (Liu et al.,
2016). The lncRNA RP11-436H11.5 functions as a ceRNA to
upregulate BCL-W expression by sponging miR-335-5p,
thereby promoting proliferation and invasion in renal cell
carcinoma (Wang et al., 2017a). The downregulation of long
noncoding RNA RP11-708H21.4 is associated with a poor
prognosis in colorectal cancer and promotes tumorigenesis by
regulating the AKT/mTOR pathway (Sun et al., 2017). RP11-
380D23.2 drives the distal-proximal patterning of the lung by
regulating PITX2 expression (Banerjee et al., 2018). The
lncRNA LAMTOR5-AS1, which is known as late endosomal/
lysosomal adaptor-2C MAPK and MTOR activator 5
(LAMTOR5) antisense RNA 1, was first shown to be
associated with PCa in this report. Subsequently, we assessed
the diagnostic effectiveness of differential lncRNAs in
differentiating between PCa and BPH tissues. When the PSA
level was combined with the three differential lncRNAs, the
AUC was 0.984, the sensitivity was 97.9% and the specificity was
84.2%, which are better than the values obtained using PSA
only. We previously demonstrated that different levels of two
circRNAs (circ_0057558 and circ_0062019) and four genes
DEGs (ITGBL1, TGM4, KRT15, and HOXA7) could help to
distinguish PCa patients from non-PCa patients (Shan et al.,
2017; Xia et al., 2018); thus, we proposed that combining these
biomarkers might improve the diagnostic efficiency of PCa. We
FIGURE 4 | Targeted microRNAs (miRNAs) of differentially expressed long non-coding RNAs (DelncRNAs) in prostate cancer (PCa) and their regulatory network
analysis. The Venn diagram demonstrates that the dysregulated miRNAs in PCa from the expression profiles of GSE76260 and GSE36802 in the GEO databases
are the targeted miRNAs of DelncRNAs in PCa (A, B), with upregulation in PCa (A) and downregulation in PCa (B); regulatory network analysis of differential
lncRNAs, their targeted miRNAs (C); lncRNA RP11-423H2.3 and LAMTOR5-AS1 shared common RNA-binding proteins (D).
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demonstrated that when the expression of two circRNAs
(circ_0057558 and circ_0062019) or 4 differentially expressed
genes (DEGs) (ITGBL1, TGM4, KRT15, and HOXA7) were
considered along with the three differentially expressed
lncRNAs (DelncRNAs), the AUC was 0.935 (Figure S3A) and
0.968 (Figure S3B), the sensitivity was 85.0% and 93.8%, and
the specificity was 89.2 and 92.7%, respectively. We also
attempted to include only one gene (ITGBL1) and one
circRNA (circ_0062019), which were the best biomarkers for
the diagnosis of PCa in our previous publications, and found
that when the expression of ITGBL1 and circ_0062019 was
considered along with the three DelncRNAs, the AUC was
0.957 (Figure S3C), the sensitivity was 93.3%, and the
specificity was 92.3% (Table S2), which were significantly
improved compared to three lncRNAs. We also demonstrated
that the lncRNA LAMPOR5-AS1 is positively correlated with
the PSA level in patients and is more closely related to less
aggressive PCa than to aggressive PCa, indicating that
LAMTOR5-AS1 may be useful in the early diagnosis of PCa
and that these differentially expressed lncRNAs might be novel
biomarkers of PCa.

We further performed a regulatory network analysis of the
differentially expressed lncRNAs and predicted that miR-7,
miR-24, and miR-30 were target miRNAs of lncRNAs RP11-
33A14.1 and RP11-423H2.3. Among these miRNAs, two
miRNAs (miR-7 and 30d) were upregulated (Figure 4A), but
four miRNAs (miR-24, miR-30a, miR-30c, and miR-30e) were
repressed in the prostate cancer tumor tissue (Figure 4B) in
the two GEO datasets. To determine if possible mechanisms of
action that target miRNA expression were affected by these
DelncRNAs, we knocked down RP11-423H2.3 and
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LAMTOR5-AS1 in PCa cells. Our results revealed that
knockdown of RP11-423H2.3 reduced the expression levels
of miR-24-3p, miR-30a, miR-30d, and miR-30e and
upregulated miR-7-1-3p in both PC3 and DU145 cells
(Figures 5A–C). We also found that when LAMTOR5-AS1
was knocked down (Figure 5D), miR-942-5p, and miR-542-3p
were repressed in PC3 cells (Figure 5E) but upregulated in
DU145 cells (Figure 5F). In keeping with the ceRNA
regulatory mechanism, lncRNAs can function as molecular
decoys or sponges of microRNAs (Salmena et al., 2011), which
might cause increased expression of miR-7-1-3p following
knockdown of RP11-423H2.3. On other hand, some
lncRNAs could also be processed to generate miRNAs or
activate miRNA expression (Yoon et al., 2014), so that
several miRNAs were deregulated after knockdown of RP11-
423H2.3 or LAMTOR5-AS1, which supported the effects of
RP11-423H2.3 on miR-7/miR-24/miR-30 or LAMTOR5-AS1
on miR-942-5p/miR-542-3p via direct interaction. miR-7 can
inhibit the stemness of prostate cancer stem-like cells and
tumorigenesis by repressing the KLF4/PI3K/Akt/p21 pathway
(Chang et al., 2015). miR-24 serves as a tumor suppressor role
in PCa and was repressed in prostate cancer cell lines and
tumor tissue, which was correlated with high PSA serum levels
and related to prostate cancer progression (Lynch et al., 2016).
miR-30 was also downregulated in prostate cancer cells
compared to that in the prostate immortalized normal
epithelial-derived cell line RWPE-1, which may be associated
with tumor suppressor functions in prostate cancer (Kao et al.,
2014), and miR-30 has been identified as a direct regulator of
androgen receptor signal ing in prostate cancer by
complementary functional microRNA library screening
FIGURE 5 | Quantitative real-time (qRT-PCR) analysis of the gene expression levels of long non-coding RNAs (lncRNAs) and target microRNAs (miRNAs) in prostate
cancer (PCa) cells with knockdown of RP11-423H2.3 or LAMTOR5-AS1. Knockdown of RP11-423H2.3 (A–C) and LAMTOR5-AS1 (D–F) in prostate cells; the
expression levels of target miRNAs in PC3 cells (B, E) and DU145 cells (C, F). *p < 0.05; **p < 0.01; ***p < 0.001.
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(Kumar et al., 2016). miR-30a-5p and miR-30b were not only
found to be lower in PCa tumors than in benign tissues but
significantly increased when VCaP and PC3 cells were treated
with saracatinib and PP2. However, miR-30c was different
(Kao et al., 2014). miR-30b-3p and miR-30d-5p can be direct
regulators of androgen receptor signaling in prostate cancer,
and inhibition of miR-30b-3p and miR-30d-5p can increase
androgen receptor (AR) expression and promote androgen-
independent cell growth (Kumar et al., 2016). Finally, we
de termined tha t the lncRNAs RP11-423H2.3 and
LAMTOR5-AS1 shared common RBPs, including eIF4AIII,
U2AF65, and UPF1. Some lncRNAs can recruit regulatory
compounds and affect gene expression by interacting with
RBPs (Jia et al., 2017). The lncRNA MEG3 interacts with the
RBP polypyrimidine tract-binding protein 1 (PTBP1) and
induces cholestatic liver injury (Zhang et al., 2017).
LncRNAs might affect the expression level of neighboring
genes by a cis-regulated function. We found that all three
lncRNAs, i.e., RP11-33A14.1, RP11-423H2.3, and LAMTOR5-
AS1, interacted with FUS, while the loss of FUS expression
may contribute to cancer progression (Brooke et al., 2011). The
DNA and RNA helicase UPF1 played key roles in nonsense
mediated RNA decay (NMD) that could selectively degrade
aberrant RNA transcripts (Azzalin and Lingner, 2006). FUS
was a multifunctional protein and participated in many RNA
metabolism pathways, and mutant FUS suppressed protein
biosynthesis and disrupted NMD regulation (Kamelgarn et al.,
2018). FUS expression was also inversely correlated with
Gleason grade of prostate cancer (Ghanbarpanah et al.,
2018). We demonstrated that deregulation of FUS and UPF1
was in both PC3 and DU145 cells following knockdown of
RP11-423H2.3 or LAMTOR5-AS1 (Figure S4). which implied
that RBP FUS and UPF1 with lncRNA RP11-423H2.3 or
LAMTOR5-AS1 interactions might affect prostate cancer
progression. Deregulation of the RNA-binding protein fused
in sarcoma/translocated in liposarcoma (FUS/TLS) in breast
cancer cells by interacting with the lncRNA nuclear
paraspeckle assembly transcript 1 (NEAT1) and miR-548ar
could induce cell apoptosis (Wang et al., 2016). As FUS is a
member of the TET protein family, this protein was found to
be inversely regulated by miR-141 in human neuroblastoma
(Wang et al., 2016) and can be activated by lncRNA XIST,
which also served as a ceRNA in cervical cancer progression
while competitively binding with miR-200a (Zhu et al., 2018).
FUS promoted conditions that favored cell-cycle arrest by
reducing proliferator factors and was a key link between
androgen receptor signaling and the progression of the cell
cycle in prostate cancer (Brooke et al., 2011; Ghanbarpanah
et al., 2018).
CONCLUSIONS

While we continue to search for smarter and more reliable,
precise, and cost-effective screening methods, we continue to
Frontiers in Genetics | www.frontiersin.org 1018
advocate shared decision-making in prostate cancer screening to
serve our patients' best interests. The differentially expressed
lncRNAs and their specific regulatory networks may serve as
potential biomarkers for the clinical diagnosis and treatment of
PCa, which could guide decisions regarding whom to biopsy and
whom to re-biopsy after an initial negative biopsy with continued
suspicion of PCa and might support an individual oncological
approach in the future.
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Since the pioneering NCI-60 panel of the late’80’s, several major screenings of genetic

profiling and drug testing in cancer cell lines have been conducted to investigate how

genetic backgrounds and transcriptional patterns shape cancer’s response to therapy

and to identify disease-specific genes associated with drug response. Historically,

pharmacogenomics screenings have been largely heterogeneous in terms of investigated

cell lines, assay technologies, number of compounds, type and quality of genomic

data, and methods for their computational analysis. The analysis of this enormous and

heterogeneous amount of data required the development of computational methods for

the integration of genomic profiles with drug responses across multiple screenings. Here,

we will review the computational tools that have been developed to integrate cancer

cell lines’ genomic profiles and sensitivity to small molecule perturbations obtained from

different screenings.

Keywords: genomics, pharmacogenomics, integration, bioinformatics, online databases

INTRODUCTION

Clinical responses to cancer treatment are strongly influenced by the patient’s genomic landscape,
pushing modern therapeutics toward a more personalized approach (1). To this end, despite
their inability to reflect many aspects of a drug’s behavior in the human body, cancer cell lines
have been the most widely used models to explore the molecular basis of drug activity. Indeed,
since the NCI-60 project, several major screenings of unite genetic profiling and drug testing
have been created to investigate how genomic portraits can shape cancer response to therapy.
These efforts required the definition of integrated frameworks that, leveraging on high-throughput
technologies and computational methods, addressed the identification of genomic factors of
cancer vulnerability associated with drug sensitivity. The NCI-60 project (https://dtp.cancer.gov/
discovery_development/nci-60/) has been the first extensive screening of a massive number of
chemical compounds (>50,000) on a well-defined set of cancer cell lines (60 across nine different
tumoral tissues) (2, 3). Building on the NCI-60 approach, several other projects investigated the
interplay between genomic backgrounds and responses to drug treatment in cancer cell lines
(Figure 1A). All cancer cell line screenings basically adopt two approaches. In the first strategy,
the molecular profiles of untreated cells and their response to various compounds are investigated
in parallel to assess or predict how the molecular portraits determine intrinsic cell sensitivity and
resistance to drugs or potential drugs. In the second, cell lines are profiled both before and after
treatment to assess how their expression profiles respond to perturbation by the various agents
tested. In particular, the Cancer Cell Line Encyclopedia (CCLE, https://portals.broadinstitute.org/
ccle) project fully characterized themolecular profiles of more than 1,000 untreated cancer cell lines
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along with their response to a panel of 24 Food and Drug
Administration (FDA)-approved drugs (4–6). Similarly, the
Genomics of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org) and the Cancer Therapeutics Response
Portal (CTRP, http://portals.broadinstitute.org/ctrp/) linked
genomic features of more than 800 cancer cell lines to their
sensitivity to hundreds of chemical compounds comprising
FDA-approved drugs, clinical candidates, and small molecules
(7–11). Conversely, the Connectivity Map (CMap) and its
recent development, L1000 (CLUE, https://clue.io), profiled
cancer cell lines before and after the treatment with several
chemical compounds and genomic perturbagens, retrieving
gene signatures directly associated to their administration
(12–14). Although these screenings share a similar experimental
pipeline, most of the produced data are heterogeneous and
lack concordance in terms of investigated cell lines, tested
compounds, and genomic information. In this review, we will
describe some computational tools for the integrative analysis of
data from different pharmacogenomics resources.

INTEGRATIVE ANALYSIS OF GENOMICS

AND PHARMACOLOGICAL DATA

Inspired by the NCI-60 project, several collaborative efforts
scaled up the number of cancer cell lines investigated in
pharmacogenomics studies from the original 60 to more than
1,400, planning to reach over 10,000 publicly available cancer
models in the near future (15). The massive amount of
genomic and drug response data generated by these screenings
are commonly collected in databases that, through dedicated
web portals, provide direct insights into potential interactions
between the analyzed cancer cell lines and the tested drugs.
These databases are commonly equipped with computational
resources specifically designed for the navigation and the analysis
of the pharmacogenomics data, as for instance GDSCTools (16),
CellMiner (17), Enrichr (18), L1000 Viewer (19), PharmacoGx,
and PharmacoDB (20, 21), and the recently deployed RING (22).
However, most of these tools are database specific and have
limited capabilities in integrating data obtained from different
screenings. This limitation is mostly due to the heterogeneity
of data provided by the various studies, with drug tests not
standardized across projects and genomic profiling not always
available for the entire panel of cell lines. In addition, data are
often unbalanced, with experiments comprising a high number
of cell lines screened on few drugs (e.g., CCLE and GDSC) and,
vice versa, screenings of large pools of chemical compounds
performed on small cohorts of cancer cell lines (as in the NCI-
60). Finally, while genomic data are rather homogeneous and can
be easily integrated across studies after removing batch effects,
pharmacological data derived from distinct experimental designs
must be kept separate as they are profoundly different in terms
of analytical assays, tested drug concentration, and retrieved
inhibitory potential (23, 24). Despite these intrinsic limitations,
several approaches have been proposed for the integrative
analysis of genomics and pharmacological data collected from
different screenings (Figure 1B). In particular, CellMinerCDB

combines genomic profiles from NCI-60, CCLE, GDSC, and
CTRP with the pharmacological data provided by the NCI-60
screening (25); the Genomics and Drugs integrated Analysis
portal (GDA) integrates pharmacological data derived from the
NCI-60 with the genomic information of NCI-60 and CCLE
(26); and the CMap enables the investigation of the L1000
data through the correlation of gene lists and transcriptional
signatures modulated by the drug treatment (12, 14, 27).

CellMinerCDB: Integrative Cross-Database

Genomics and Pharmacogenomics

Analyses
CellMinerCDB (https://discover.nci.nih.gov/cellminercdb/)
expands the analysis power of CellMiner, the original NCI-60
analysis tool, with the integration of the cancer cell line data
from the Sanger/Massachusetts General Hospital GDSC, the
Broad/Novartis CCLE, and the Broad CTRP (25, 28). The
integrated database comprises all molecular profiles of almost
1,400 different cancer cell lines, together with drug activity for
more than 20,000 compounds. The guiding element, used to link
pharmacological information to genomic data from different
sources, is the set of common cancer cell lines between the
NCI-60 and the other resources, with 55 NCI-60 lines shared
with GDSC, 44 with CCLE, and 671 in common between CCLE
and GDSC. CellMinerCDB performs correlation analyses to
investigate and visualize relationships between the drug activity
of a compound and the specific profile of a selected molecular
feature across all the available cell lines (univariate analysis). In
addition, linear regression methods are implemented for the
integrative analysis of multiple identifiers (multivariate analysis).
The confidence of the associations is assessed by statistical
analyses conducted through a basic linear regression model or
using least absolute shrinkage and selection operator (LASSO).
An interesting feature of CellMinerCDB is the possibility to
compare patterns associated to either drug activity or molecular
data via the Compare Pattern function of the univariate analysis
search. This analysis allows the identification of genomic
determinants of drug response, as exemplified by the connection
found between the expression of Schlafen 11 (SLFN11) and the
response to several DNA-targeted anticancer drugs as platinum
derivatives, topoisomerase inhibitors, and poly (ADP-ribose)
polymerase (PARP) inhibitors (25).

Genomics and Drugs Integrated Analysis
GDA (gda.unimore.it/) is a web-based tool designed for the
integrative analysis of drug response, mutations, and gene
expression profiles derived from the NCI-60 consortium and
the CCLE (26, 29). GDA comprises 73 cancer cell lines shared
by NCI-60 and CCLE and treated with 50,816 compounds and
integrates the drug response data from the NCI-60 screening
with the mutations and genomic information derived from
both CCLE and NCI-60. GDA allows four different types of
analyses, namely, from drug to gene, from gene to drug, from
signature to drug, and from drug to signature. Pharmacological
and genomic data can be queried to identify drugs correlated to
gene mutations (from gene to drug), gene mutations associated
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FIGURE 1 | (A) Summary of the major resources of pharmacogenomics data in terms of number of cell lines with genomic data, represented tissues, tested

compounds, and type of genomic information. NCI-60; CCLE, Cancer Cell Line Encyclopedia; GDSC, Genomics of Drug Sensitivity in Cancer; CTRP, Cancer

Therapeutic Response Portal; CMap, Connectivity Map. (B) Main characteristics of CellMinerCDB, Genomics and Drugs integrated Analysis portal (GDA), and CMap,

the computational resources for the integrative analysis of pharmacogenomics data that are described in this review. LASSO, least absolute shrinkage and

selection operator.

to drug responses (from drug to gene), and drugs associated to
active gene signatures (from signature to drug). Starting from
a drug correlated to gene mutations, gene expression profiles
can be used to identify genes differentially expressed in cell
lines sensitive to the selected compound. The statistics behind
GDA is based on drug response data. Basically, all pairs of
cell lines and drugs are defined as responsive if the relative
sensitivity is smaller than two standard deviations of the left
tail of the distribution of all relative sensitivities, and non-
responsive otherwise. Based on genomic data, cell lines are
classified as mutant if treated with the compound and carrying
the selected set of mutations and as wild type if treated with the
compound but without the specific set of mutations. Given these
classifications, compounds are ranked using a score defined by

the fraction of responsive in mutant multiplied by the fraction
of non-responders in wild type. This score ranks each drug
based on the enrichment of responsive in the mutant group.
The statistical significance of this ranking is computed using a
one-tailed Fisher’s exact test for the enrichment of responsive
in mutant as compared to non-responsive in wild type, given
the number of non-responsive in mutant and responsive in
wild type. Results are accessible through interactive graphical
representations and tables and can be directly fed to external
tools as Enrichr for functional annotation (18). When used to
identify compounds able to inhibit the proliferation potential of
cancer cell lines with aberrant nuclear YAP/TAZ activation, GDA
retrieved imatinib analogs and statins as potentially active drugs.
Following GDA indications, in vitro studies demonstrated that
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the combination of statins with dasatinib, an imatinib analog
enhances YAP/TAZ nuclear exclusion, is able to block YAP/TAZ
transcriptional activity, and is much more active in inducing
apoptosis in different tissues (29).

Connectivity Map and the CMap Linked

User Environment
CMap (https://www.broadinstitute.org/connectivity-map-cmap)
was one of the first computational resources developed for the
investigation of connections between transcriptomics and drug-
induced perturbations (12). As extensively reviewed in Musa
et al. (30), the goal of CMap is to identify drug or disease-
associated gene signatures correlating with transcriptomics
changes induced by the administration of drugs or chemical
compounds (31, 32). The original project comprised the gene
expression profiling of three cancer cell lines before and after
the treatment with 164 different small molecules, obtaining drug-
associated gene signatures for each cell line. This initial version
has been recently scaled up through the L1000 Assay Platform,
a method to analyze the expression levels of 978 selected
landmark transcripts (assayed with 1,058 probes, including 80
controls) that have been shown to be sufficient to recover more
than 80% of the information relative to the full transcriptome
(14). This new approach translated into the screening of 86
different cancer cell lines using 27,927 unique perturbagens,
including 19,811 small molecules and 7,494 genetic perturbations
(consisting of overexpression or knockdown of different genes
associated with human diseases or biological pathways). This
large-scale screening finally resulted in a collection of 476,251
gene expression signatures that can be analyzed through the
CMap Linked User Environment (CLUE, https://clue.io). In
CLUE, the Query tool allows to input a gene signature (i.e.,
a list of genes upregulated and downregulated) and search for
perturbagens (chemical and/or genetic) that induce a similar (or
opposite) expression profile in the treated cells. The statistical
significance of the association is assessed through a connectivity
score that takes into account the strength of the similarity
between the query and the induced signature as compared to
the enrichment of all other signatures in the database (14). This
approach proved its efficacy in the identification of a novel
inhibitor for the serine-threonine kinase CSNK1A, an enzyme
essential in specific subtypes of myelodysplastic syndrome and
acute myeloid leukemia. Starting from the loss of function
signature of CSNK1A1, authors searched CMap for compounds
mimicking the loss of this kinase and identified one compound
(BRD-1868) with a high connectivity score relative to this
signature. Further enzymatic assays confirmed both the binding
between BRD-1868 and CSNK1A1 and its inhibitory effect on
enzymatic activity (14). From its first publication, CLUE has
been expanded to include also proteomics analysis ranging from
expression arrays to histone modification signatures.

CONCLUDING REMARKS

Efforts to decipher the molecular mechanisms of cancer
stimulated scientists to explore the interconnection between

the genomic landscape of cancer models and their response
to drug treatments. This resulted in large pharmacogenomics
screenings that, with the advent of high-throughput technologies,
generated large amounts of genomics and pharmacological
data. However, the integration of these precious information
is still challenging due to the variable type and number of
drugs and cancer cell lines that have been screened by the
various projects and the heterogeneous assays used for drug
testing in the different studies (23, 24, 33–35). Despite these
intrinsic difficulties, several computational approaches have
been developed for the integrative analysis of genomics and
pharmacological data. Their application allowed to discover
several new connections between drug sensitivity and genomic
backgrounds, enabling the potential repurposing of commercially
available drugs to cancer treatment (36–38). However, these
computational resources, although proven effective, still suffer
the limitations of the original studies as the sparsity of the
drug and cell interaction matrices, the effective impossibility
to merge drug response data across different screenings,
and the criticalities of cancer cell lines as a reliable cancer
model (39–41). To this end, the project for a Patient-Derived
Model Database (PDMB) launched in 2012 by the NCI might
represent a potential breakthrough as genomic and drug
response data directly collected from patients and patient-
derived xenografts (PDXs) will reproduce more accurately
the cancer disease and its environment than any cell line
model (42). Furthermore, while novel experimental models
are generating more accurate data, advanced computational
methods are under development to enhance the analytical
potential of existing algorithms. As recently discussed (43–
45), artificial intelligence approaches as network-based models,
deep-learning frameworks, and machine-learning techniques
are increasingly applied to investigate pharmacogenomics
connections and drug repositioning. These methods can be
effective not only for data integration but also to predict new
interactions and applications of already approved drugs (46–
48). In summary, computational approaches for the integration
of genomic and pharmacological data have the potential
to become crucial for the systematic identification of new
biomarkers of drug sensitivity and the discovery of novel
anticancer drugs on the basis of specific genetic abnormalities,
as long as reliable cellular models and highly curated data
become available.
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Cholangiocarcinoma remained a severe threat to human health. Deciphering the
genomic and/or transcriptomic profiles of tumor has been proved to be a promising
strategy for exploring the mechanism of tumorigenesis and development, which could
also provide valuable insights into Cholangiocarcinoma. However, little knowledge
has been obtained regarding to how the alteration among different omics levels is
connected. Here, using whole exome sequencing and transcriptome sequencing, we
performed a thorough evaluation for the landscape of genome and transcriptome in
cholangiocarcinoma and illustrate the alteration of tumor on different biological levels.
Meanwhile, we also identified the clonal structure of each included tumor sample and
discovered different clonal evolution patterns related to patients’ survival. Furthermore,
we extracted subnetworks that were greatly influenced by tumor clonal/subclonal
mutations or transcriptome change. The topology relationship between genes affected
by genomic/transcriptomic changes in biological interaction networks revealed that
alteration of genome and transcriptome was highly correlated, and somatic mutations
located on important genes might affect the expression of numerous genes in
close range.

Keywords: cholangiocarcinoma, clonal evolution, sequencing, transcriptome, genome

INTRODUCTION

Cholangiocarcinoma (CCA), a heterogeneous malignant tumor currently acknowledged as the
second most common primary liver cancer, showed increasing incidents worldwide during past
decades. Although CCA is considered as a rare cancer in most countries due to its relative low
incidents (lower than 6 cases per 100,000 people), the situations are different in several countries
including China and Thailand, where CCA incident reaches an exceptionally high level. Among
all CCA cases, intrahepatic cholangiocarcinoma takes up only 10%, while a minority (15%) of
these patients were diagnosed with resectable disease status (Cardinale et al., 2018; Rizvi et al.,
2018). While the most promising therapeutic strategy for CCA is surgical operation combined
with chemo-/radio- therapy, this approach was considered only suitable for early stage CCA and
later stage CCA patients often face the difficulty of lacking effective treatment options. Thus, most
CCA patients usually suffered from poor prognosis (5-year survival rate less than 10%). Meanwhile,
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the heterogeneity of tumor on multiple levels (e.g., genomic,
transcriptional) often resulted in resistance to therapy, which
further intensifies the challenge of CCA treatments. Thus, a
thorough evaluation of the landscape on CCA genome and
transcriptome could provide clinically related insights into the
genesis and progression of CCA.

Just like other tumors, CCA is developed on the basis
of acquiring tumor somatic mutations and clonal evolution.
When tumor arises and progresses, the acquisition of somatic
mutations randomly happened, resulting in different groups of
tumor cells with distinct genetic features. The tumor clone,
built up with the complicated constitution of groups of tumor
cells (which could be referred as subclones), evolves during its
development, dynamically changing its structure to better fit
the micro-environment (Greaves and Maley, 2012; McGranahan
and Swanton, 2017). During this entirely evolutionary process,
certain somatic mutations could give tumor cells survival
advantage and subpopulation carrying these genomic alterations
expanded, while subclones with mutations reducing survival
capacity diminished. Thus, deciphering the clonal evolution
in CCA could provide valuable information regarding crucial
genetic events in tumorigenesis and progression and how
different biological pathways might be affected by these genetic
events, which in turn could help further understand the intrinsic
mechanisms of tumor progression. Indeed, such efforts have been
made in other types of cancer including leukemia (Ferrando
and López-Otín, 2017) and solid tumors such as hepatocellular
carcinoma (Chen et al., 2018) and breast cancer (Hoadley
et al., 2016), and different clonal evolution patterns have been
discovered with high correlation with patients’ clinical course.

However, the evolutionary process in CCA still requires
further investigation. What more, although the importance of
clonal evolution is widely acknowledged, how tumor clonal
structure affects tumor transcriptome remained poorly explored.
Understanding how somatic mutation interacted with such
transcriptome change could further provide valuable insights
into the evolutionary mechanism of CCA development. To
explore the genetic and transcriptional landscape of intrahepatic
CCA, we performed whole exome sequencing and transcriptome
sequencing on tumor and corresponding peritumor tissue of 9
CCA patients. The differences on genetic and transcriptional
levels were investigated and tumor clonal evolution was
deciphered to discover the molecular pathways taking part in the
deregulation of tumor cells. These findings will be of great value
in understanding the mechanism of CCA development and how
transcriptome interact with genetic alterations.

MATERIALS AND METHODS

Sample Collection
Tumor and corresponding peritumor tissue samples were
collected from 9 patients diagnosed with intrahepatic
cholangiocarcinoma during their surgical operation for tumor
removal. The detailed clinical information is provided in Table 1.
All human tissue sample collection procedures and usage of
these samples were approved by the Institution Review Board of

TABLE 1 | Clinical characteristics of 9 enrolled CCA patients.

Clinicopathological variables Patient
number (n = 9)

Percentage
(100%)

Sex

Male 5 55.6

Female 4 44.4

Age at first enrolled year, Mean ± SD 62.44 ± 11.78

HBV infection

Negative 6 66.7

Positive 3 33.3

HBV DNA

≤103 7 77.8

103–104 1 11.1

104–105 1 11.1

Maximal tumor size, cm

0–2.5 2 22.2

2.5–5.0 2 22.2

5.0–10 5 55.6

Tumor number

Single 8 88.9

Multiple 1 11.1

Liver cirrhosis

Absent 5 55.6

Present 4 44.4

Microvascular invasion

Yes 3 33.3

No 6 66.7

PVTT

Yes 1 11.1

No 8 88.9

Microsatellite lesion

Absent 8 88.9

Present 1 11.1

TNM

I 5 55.6

II 1 11.1

IV 3 33.3

BCLC

0 1 11.1

A 4 44.5

B 1 11.1

C 3 33.3

PVTT, Portal vein tumor thrombosis; TNM, The TNM Classification of Malignant
Tumors; BCLC, the Barcelona Clinic Liver Cancer staging system.

Mengchao Hepatobiliary Hospital of Fujian Medical University
and written consents were obtained from all participated patients
included in this study.

Whole Exome/Transcriptome
Sequencing
Whole-exome and transcriptome sequencing were performed
to capture the genetic and transcriptional features for the
acquired tumor and corresponding peritumor tissue on Illumina
HiSeq 3000 system.
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Whole Exome Sequencing Data
Processing
Somatic single nucleotide variants (SNV) and copy number
alterations (CNA) were detected for the whole exome sequencing
data of tumor tissue samples using the corresponding peritumor
as control. To identify SNVs, SomaticSniper (version 1.0.5.0)
(Larson et al., 2012) were applied using default parameters
provided in the algorithm manual and only SNVs with somatic
score≥ 40 were accepted for downstream analysis. The identified
SNVs were further filtered with such criteria to rule out possible
false discovery: (1) read depth≥ 50 in both tumor and peritumor
tissues; (2) variant allele frequency ≥ 10% in tumor tissue; (3)
variant allele frequency < 10% in normal peritumor tissues. The
detected SNVs were then annotated using wANNOVAR to obtain
related gene and functional information. For CNVs, TitanCNA
(version 1.17.1) (Ha et al., 2014) was applied on the tumor
tissue’s whole exome sequencing data using the corresponding
peritumor as control using the workflow script provided by
the algorithm.

Transcriptome Sequencing Data
Processing
All acquired Transcriptome sequencing reads were first aligned
to ribosomal rRNA sequences to remove ribosomal RNA
sequence. The unmapped reads were then aligned to human
genome reference (GRCH37) using star with GENCODE gene
annotation. The gene expression was quantified with fragments
per kilobase of exon per million mapped fragments (FPKM)
and genes with no read counts in > 50% samples were not
included in downstream analysis. Differentially expressed genes
were identified using limma package. Genes with adjusted p
value < 0.05 (Benjamini-Hochberg correction) and fold-change
>2 or <0.5 were then considered as significantly differentially
expressed between CCA tumor and peritumor.

Clonal Evolution in CCA
For each CCA tumor sample, inference of subclonal population
was conducted using Sclust (Cun et al., 2018). Sclust provided
a copy-number analysis method incorporated with mutational
clustering to accurately determines copy-number states and
subclonal populations. In brief, whole exome sequencing data
of the paired tumor and peritumor samples were first processed
using command bam process to extract the read ratio and SNP
information. Then, the copy number analysis is conducted with
command cn for each patient, using the obtained read ratio
and SNP information together with SomaticSniper mutation
calling results. Finally, the mutational clustering was performed
using command cluster based on above results to identify tumor
clonal structure.

Discovery of Altered Subnetworks
Influenced by Somatic Mutations and
Transcriptome Change
HotNet2 was applied to discover altered subnetworks in the
large gene interaction networks. HotNet2 required two input
files for subnetwork identification: Heat scores and Interaction

network. For somatic mutations, Heat scores for HotNet2 were
generated based on mutation distribution across all patients; For
transcriptome, Heat scores were generated based on the adjusted
p-value produced by DESeq2 package. Network hint + hi2012
and irefindex9 provided by HotNet2 was used as the Interaction
network for this analysis. The algorithm was run using all
recommended parameters provided by algorithm authors and the
identified subnetworks were visualized using Cytoscape (version
3.4.0) (Shannon et al., 2003).

RESULTS

Case Summary
In total, 9 patients that were diagnosed with CCA and received
surgical operation in Mengchao Hepatobiliary Hospital were
included in this study. According to previous reports regarding
inflammatory context of liver tumors (Bishayee, 2014; Banales
et al., 2016), we chose peritumor tissue as sequencing control
to better capture the CCA characteristics. During their surgery,
cholangiocarcinoma tumor tissues along with corresponding
peritumor tissues were collected and the tumor existence for
all patients was histologically confirmed. Then, whole-exome
and transcriptome sequencing were performed for acquired
tissue samples. Among all included patients, 77.8% (7/9) were
diagnosed with TNM staging I-II and the other 22.2% were
diagnosed with TNM staging III. The average diameter of tumor
in each patient was 5.1 cm (range, 2.0–9.5 cm), while Vascular
tumor thrombus was seen in 44.4% (4/9) of all patients. Detailed
clinical information for all included patients before they received
surgical operation is presented in Table 1 and the corresponding
clinical courses were demonstrated in Figure 1A.

Landscape of CCA Genome and
Transcriptome
Whole-exome sequencing achieved a mean average depth of
194.67 × cross all collected tissue samples. To identify tumor
somatic mutations, SomaticSniper was applied on all tumor tissue
samples using corresponding peritumor as control. Meanwhile,
copy number variation was identify using TitanCNA. In total,
an average of 378 somatic SNVs (range, 260–529) were detected
in tumor tissues, and the distribution of SNVs across human
Genome was visualized in Figure 1C. Annotation of acquired
SNVs revealed a number of common mutated genes across
tumor samples, containing several known cancer-related genes
(Figure 1B). Several members of mucin (MUC16, MUC3A,
MUC6, and MUC4) were among the most frequently mutated
genes, which is consistence with previous reports (Chang et al.,
2006; Pereira et al., 2016; Liu et al., 2018; Pareja et al., 2019). Other
noteworthy genes included DSPP, PER3, MTCH2, and KRT18,
all have been reported with important roles in tumor formation
and development. On the other hand, a number of copy number
of variations was also identified in tumor samples, showing a
wide-spread instability of cancer genome (Figure 1D).

Meanwhile, transcriptome sequencing revealed a significant
change on transcriptional level, with a total of 2366 differentially
expressed genes identified between CCA tumor and peritumor
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FIGURE 1 | The Clinical courses and the genome and transcriptome landscape of CCA. (A) The clinical course of 9 included CCA patients. RFA, Radiofrequency
ablation; TACE, Transarterial chemoembolization. (B) The common mutated genes with somatic SNVs identified in include CCA patients. Different color indicated the
functional type of somatic SNVs in these genes (orange: non-synonymous mutation; light blue: synonymous mutation; gray: not mutated). (C) The genomic
distribution of somatic SNVs for included CCA patients. Each circle represented a single patient. Dots in the dot plot represented identified somatic SNVs and their
heights indicated corresponding variant allele frequencies. (D) The genomic distribution of somatic CNVs for included CCA patients. Each circle represented a single
patient. The scatter plot showed the logR value for each segment, and regions with different color indicated their copy number status (red: copy number gain; gray
normal; green: copy number loss). (E) Principal component analysis of CCA transcriptome. The image showed the three-dimension distribution of each sample on
the first three principal components. Red dots represented peritumor samples and black dots represented tumor samples. (F) Clustering of included tissue samples
using top genes correlated with the first three principal components. Genes names and sample names were provided.

Frontiers in Genetics | www.frontiersin.org 4 March 2020 | Volume 11 | Article 19530

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00195 March 12, 2020 Time: 19:2 # 5

Chen et al. Multi-Omic Analysis of Cholangiocarcinoma

samples. To provide a clear classification based on samples’
transcriptional features, principal component analysis was
conducted to better characterize these samples. Not surprisingly,
tumor samples and peritumor samples were well divided by
the first three principal components, which explained 21.96%,
10.60%, and 8.68% of variation in samples’ transcriptome,
respectively (Figure 1E).

The results showed that the top genes positively associated
with PC1 included RBP4, SLC27A5, and PCK2, all of which
were known tumor-related genes and correlated with cancer
patients’ survival (Anderson and Stahl, 2013; Leithner et al., 2014,
2015; Balsa-Martinez and Puigserver, 2015). Meanwhile, PC1
negatively associated genes included FLNA, ARF5, and SLC25A6,
suggesting its connection to cancer development (Savoy and
Ghosh, 2013; Casalou et al., 2016; Shao et al., 2016; Cho et al.,
2019). For PC2, top positively correlated genes included IFITM1
and GPX1, both have been reported to be associated with risk of
numerous cancers (Ravn-Haren et al., 2006; Arsova-Sarafinovska
et al., 2009; Lee et al., 2012; Ogony et al., 2016), while most
negatively PC2 correlated genes included common-known tumor
over-expressed genes such as EFNA1 (Nakamura et al., 2005;
Xiang-Dan et al., 2010).

As in PC3, most noteworthy genes positively correlated with
this principal component are ZFP36 and DUSP1, both are
known for their function of regulation in cancer progression

(Montorsi et al., 2016; Nagahashi et al., 2018). Other important
correlated genes included t CXCL9 and CXCL10, and they
served as important regulators of immune activation in tumor
microenvironment (Bronger et al., 2016; Ding et al., 2016;
Tokunaga et al., 2018).

Using top genes correlated with the first three principal
components, transcriptome clustering revealed that tumor
sample and peritumor samples could be indeed well separated
(Figure 1F), suggesting that CCA tumors indeed have distinct
gene expression patterns compared to peritumor tissues.

Clonal Evolution in CCA
To explore the evolutionary process driving tumorigenesis
and development, Sclust algorithm was applied to infer
subclonal populations in cancer genomes. Combining copy-
number analysis and mutation clustering approach, Sclust
could accurately determine copy-number states as well as
cellular prevalence of mutations. As shown in Figure 2A and
Supplementary Figure S1, different types of clonal structure
were revealed. For 7 of the included patients (CCA-1218, CCA-
1431, CCA-1461, CCA-950, CCA-1429, CCA-1590, and CCA-
1600), no subclonal mutations were identified since all mutations
within each sample could be clustered into one single cluster
according to their allele frequencies. These results showed
that during the tumor clonal evolution of these patients, the

FIGURE 2 | Clonal evolution of CCA and its influence on biological interaction network. (A) Mutation clusters identified by Sclust in 4 of 9 included CCA patients.
Additional cluster(s) other than cluster 0 were subclonal mutation clusters. Patient identifiers were provided above each plot. (B) Clustering of included tissue sample
using known immune signatures. (C) Go term enrichment results in biological pathways for each identified subnetwork. Subnetwork 2–4 indicated subnetwork
altered by clonal mutations and subnetwork of subclonal mutation indicated the subnetwork altered by subclonal mutations. Subnetwork 1 only contained two
genes and did not show significant enrichment in Gene Ontology of biological pathways.
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randomly accumulated mutations might not create subclones
with significant survival advantage. The other 2 patients (CCA-
1141 and CCA-1174), on the other hand, presented considerable
portion of subclonal mutations. In patient CCA-1141, two
large subclonal mutation clusters were observed, with cellular
frequency of 46.70% and 86.88%, respectively. The other patient,
CCA-1174, also showed one considerable subclonal mutation
clusters, accounting for 63.48% of all tumor cells. The existence
of a large number of subclonal mutations might suggest that
the emerge of these tumor subclones took place in the later
stage of tumor development, while a high cellular frequency
further indicated that they possessed notable survival advantage.
Surprisingly, these two patients with subclonal mutations
identified showed better prognostic outcome compared to other
patients, with relapse-free survival and over-all survival both
longer than 20 months. One possible explanation is that
in this kind of patients, some critical mutations that might
greatly benefit tumors’ growth took place in the later period
of tumor development (which explained the expanding tumor

subclones), while other tumor acquired these genetic alterations
in the early stage, and thus resulted in the differences in
patients’ prognosis. Evaluation of known immune signature
based on gene expression further revealed that CCA-1141
and CCA-1174 could be categorized into cold tumor with
relatively low level of cells correlated with immune response
(Figure 2B). This result suggested that the clonal evolution of
CCA might be closely related to its immune microenvironment,
and high level of infiltration might suppress the evolutionary
process of tumor cells.

To better understand how tumor clonal evolution affected
different biological pathways/processes in tumor cells, we first
divided patients’ somatic mutations into clonal mutations and
subclonal mutations, and then HotNet2 algorithm was used to
scan gene interaction networks for altered subnetworks affected
by different categories of mutations. For clonal mutations,
four subnetworks were identified (Figures 3A–E). The first
subnetwork contained only 2 core genes: RUNX1T1 and
TAL2 (Figure 3A). These two genes were both related to

FIGURE 3 | Subnetworks altered by CCA clonal and subclonal mutations. (A–E) Subnetworks that were affected by tumor clonal/subclonal mutations identified by
HotNet2. Red circles indicated genes that were identified as core genes within corresponding subnetwork, and blue circles indicated expansion genes within
corresponding subnetwork, while gray circles indicated genes that were not identified by HotNet2 but served as linker genes that connect identified genes.
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gene transcription and their dysregulation has been reported
to promote tumorigenesis in various cancer. The second
subnetwork (Figure 3B) contained three core genes (FBLN1,
FBLN2, and ZNF8, label with red) and six expansion genes
(CDC42EP4, EIF2AK4, EXPH5, GIGYF1, VPS8, and ZNF233,
labeled with blue). Gene Ontology (GO) term enrichment
analysis revealed that this subnetwork is closely related with
extracellular matrix structure, cell-substrate adhesion and cell
morphogenesis (Figure 2C), suggesting that tumor clonal
mutation would show a tendency to affect biological pathways
related to cells’ interaction with microenvironment, which is
critical for tumor development. The third subnetwork was made
up of eight highly interacted genes, namely ATXN1, BCR,
GLI1, HTT, LZTR1, SPTBN4, SYNE1, and TP53 (Figure 3C).
All these genes were known as oncogenes, including a well-
known driver gene in various cancer, TP53. The last and biggest
subnetwork (Figure 3D) including 10 core genes (ALK, DEF6,
GRIK2, GRIN2B, HIVEP2, KRT18, LRP2, LRRC7, TIAM1,
UBXN11) and 6 expansion genes (KLC2, MYO5B, PTPRE,
SETD5, TRMT2A, and ZC3H12A), most of which served as
important components of multiple signaling pathways and
involved in regulation of cancer cell.

Interestingly, several subnetworks altered by tumor clonal
mutations were closely related to major metabolism pathways. It’s
within expectation since one well-known intrinsic character for
tumor cells is its abnormal metabolism.

On the other hand, we also analyzed the subnetwork affected
by tumor subclonal mutations. Considered that two out of
nine patients were identified with subclonal mutations, HotNet2
identified only one subnetwork that was altered by subclonal
mutations (Figure 3E). GO analysis revealed that the mutated
genes were most relevant to cell adhesion. This result suggested
that subclonal mutations benefiting tumor metastasis might bring
survival advantage for corresponding tumor subclones.

Transcriptome Analysis Revealed
Alteration in Pathways Enriched in CCA
Clonal Evolutionary Process
we next explored the transcriptome landscape to evaluate the
change in gene expression during CCA development. Using
limma algorithm, a total of 2366 differentially expressed genes
[| log(fold-change)| ≥ 1 and Padjusted < 0.05] were identified
in CCA tumor comparing to peritumor samples (Figure 4A).
Among these genes, 1833 were significantly upregulated in CCA
and 533 were downregulated. Transcriptome clustering using the
top 20 differentially expressed genes also showed an excellent
separation between tumor and peritumor samples (Figure 4B).
GO-term enrichment analysis revealed that the up-regulated
genes (Figure 4C) were mostly enriched in the regulation of
biological process (GO:0048519, GO:0048522 and GO:0048523),
while down-regulated genes (Figure 4D) were mostly enriched
in metabolism related biological processes including carboxylic
acid metabolic process (GO:0019752) and oxoacid metabolic
process (GO:0043436).

Next, HotNet2 was once again applied to identify the
altered subnetworks affected by transcriptome aberration.

Surprisingly, genes identified in subnetworks affected by
somatic mutations (clonal or subclonal) rarely appeared in
subnetworks affected by transcriptome change. However,
mapping genes affected by transcriptome change back to
biological interaction networks revealed that many of these
genes were in close range of the altered subnetworks affected
by tumor somatic mutations (Figures 5A–E). It appeared that
tumor genomic alterations created a spreading aberration
across the biological interaction network and thus a number
of genes were under their influence, resulting in a wide-
range change of tumor transcriptome. Meanwhile, Gene
Ontology enrichment analysis revealed that subnetworks
altered by transcriptome change were dominantly enriched
in biological processes related to cell division and cell cycle
(Figure 4E), including cell division (GO:0051301), cell cycle
(GO:0004857), protein localization (GO:0008104) and cellular
component organization (GO:0016043), indicating notable
change of proliferation capacity happened during tumor
clonal evolution. It’s not surprising that cell morphogenesis
(GO:0000902), cellular localization (GO:0051641), intracellular
transport (GO:0046907) and maintenance of protein
location in cell (GO:0032507), four biological pathways
that had been reported to be significantly enriched for
mutation-affected subnetworks, were also enriched for these
transcriptome-change-affected genes.

Furthermore, we also found that these multi-omics-altered
subnetworks were significantly overlapped with pathways
presented in kegg database (Supplementary Figures S2–S21).
Noteworthily, all hot subnetworks were significantly overlapped
with pathways in cancer (hsa05200), while other enriched
pathways included cell-cycle (Vermeulen et al., 2003), ECM-
receptor interaction (Lu et al., 2012) and VEGF signaling pathway
(Roskoski, 2007), all have been reported to be related with
tumor progression.

To further investigate if the altered pathways could be
clinically related, we obtain the gene expression profile
from TCGA-CHOL dataset and use Cox regression analysis
to identify potential biomarkers for CCA patients’ overall
survival. Univariate cox regression analysis revealed that
14 genes within the hot subnetworks showed expression
pattern significantly correlated with patients’ overall survival
(Supplementary Figure S22), including PTN and EGFR, two
major players in tumor progression. Then these genes were
utilized to generate the multivariate Cox regression model using
stepwise forward selection. The acquired model consisted of 4
genes (PTPRZ1, CFH, RCN2 and VPS4B) and corresponding
model parameters were summarized in Supplementary Table S1.
The prognostic value was then calculated from the model score
as follows:

prognaotic value =
e
score

1+ escore

Applying the 50-percentage cutoff of prognostic value, the
TCGA-CHOL dataset could be divided into two risk groups
with distinct prognostic patterns (Kaplan-Meier survival analysis,
p = 0.00015, Supplementary Figure S23).
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FIGURE 4 | Differentially expressed genes and their connection to tumor clonal evolution. (A) Volcano plot showing the differentially expressed genes identified by
limma package. Genes with | log2(fold-change) | ≥ 1 and Padjusted ≤ 0.05 were marker as red, and other genes were marked as gray. (B) Clustering of included
tissue samples using top differentially expressed genes. (C,D) Go term enrichment results for up-regulated (C) and down-regulated (D) genes. (E) Go term
enrichment results in biological pathways for genes in identified subnetworks altered by transcriptome change.

All these results suggested that the alteration of tumor genome
and transcriptome were closely related, and the influence of
driver gene mutations might spread to faraway downstream.

DISCUSSION

Clonal evolution has been proved to be one of the most important
concepts in tumor genesis and development. Currently, a lot of
researches have been conducted in variable kinds of tumors and
revealed different clonal evolution patterns along with cancer
development, providing insights into better understanding of
their evolutionary mechanism. These valuable knowledges were
of great value in prognosis evaluation and treatment selection.

In our analysis including 9 cholangiocarcinoma patients, we
discovered that a major portion (7/9) of CCA cases did not
show visible subclones within the primary tumors, indicating
the existence of mature clonal structure after tumorigenesis.
Interestingly, the other two CCA patients with considerable
subclones demonstrated significantly longer RFS and OS
compared to these patients without visible subclones. Above
phenomena might suggest that the forming of a stable and
lasting clonal structure at early stage might lead to worse
clinical outcome for CCA cases. Another intriguing finding
is that the expanding subclones in tumor were connected
to relatively low immune signatures (as we showed before),
showing a close interaction between tumor and its immune
microenvironment. Meanwhile, identification of subnetworks
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FIGURE 5 | The interaction between somatic mutations and transcriptome change. (A–E) Interaction networks formed by subnetworks that were altered by tumor
mutation and corresponding close-range subnetwork genes affected by transcriptome change. Red circles indicated genes that were identified as core genes within
corresponding subnetwork, blue circles indicated expansion genes within corresponding subnetwork, orange circle indicated core genes in subnetworks altered by
transcriptome change, and green circles indicated expansion genes in subnetworks altered by transcriptome change, while gray circles indicated genes that were
not identified by HotNet2 but served as linker genes that connect identified genes.

affected by CCA clonal/subclonal mutations revealed that
clonal mutations’ influence spread across a number of different
biological pathways, while subclonal mutations influence mainly
focused on pathways that benefiting tumor metastasis. This
result indicated that most mutations with survival advantage
were acquired during early stage of CCA development and
acquisition of mutations on key regulator genes could affect
how tumor evolved.

Cancer development involved biological
alteration/dysregulation on multiple biological levels, including
genomic, epigenomic and transcriptomic. Although a lot of
studies have been conducted on every single omics level,
discovering a variety of patterns and mechanism for how
these alterations contribute to tumorigenesis, one major
question still remained largely unanswered: how the alteration
on multiple biological levels interact? In our analysis, we
identified key subnetworks that were greatly affected by genomic
and transcriptomic changes. Interestingly, although genes
in subnetworks greatly affected by genomic change rarely

overlapped with those under the influence of transcriptome
alteration, it appeared that these two groups of genes were in close
range within biological interaction networks, suggesting that
dysregulation of genome and transcriptome were closely related.
One possible explanation might be that genes that were mutated
served as sources of disturbance and affected the expression of
their neighbor genes. This disturbance could further spread,
creating a large-scale change of tumor transcriptome.

CONCLUSION

In conclusion, integrating whole exome and transcriptome
sequencing technology, our analysis demonstrated the landscape
of CCA genome as well as transcriptome and discovered the
different clonal evolution patterns in these patients. We also
identified biological pathways significantly altered by tumor
somatic mutations and transcriptome change and reveal the
connection among the alteration on different omics levels, which
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could bring insight for better understanding the mechanism of
CCA development and help future prognosis evaluation.
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Cancer is the quintessential complex disease. As technologies evolve faster each day,

we are able to quantify the different layers of biological elements that contribute to the

emergence and development of malignancies. In this multi-omics context, the use of

integrative approaches is mandatory in order to gain further insights on oncological

phenomena, and tomove forward toward the precisionmedicine paradigm. In this review,

we will focus on computational oncology as an integrative discipline that incorporates

knowledge from the mathematical, physical, and computational fields to further the

biomedical understanding of cancer. We will discuss the current roles of computation

in oncology in the context of multi-omic technologies, which include: data acquisition

and processing; data management in the clinical and research settings; classification,

diagnosis, and prognosis; and the development of models in the research setting,

including their use for therapeutic target identification. We will discuss the machine

learning and network approaches as two of the most promising emerging paradigms,

in computational oncology. These approaches provide a foundation on how to integrate

different layers of biological description into coherent frameworks that allow advances

both in the basic and clinical settings.

Keywords: multi-omics analysis, computational oncology, data integration, cancer complexity, machine learning,

network science

1. CANCER: THE COMPLEX DISEASE

Cancer is by now widely accepted to be the quintessential complex disease: a proper description
of the pathological phenotype can only be achieved by properly integrating the myriad of
interconnected biological elements and their relationships with their environment (1). As a
complex system, cancer exhibits features, such as: emergent patterns, adaptive and collective
behaviors, self-organization, non-linear dynamics, and interactions forming complex networks (2).
Examples of these can be found in the Hallmarks of Cancer (3, 4), as seen in Figure 1.

On a system-wide fashion, every tumor is involved in interactions with non-cancer elements:
such as gene-environment interactions (GxE) (5), micro-environmental interactions (6), and
those with the immune system (7); intercellular interactions within the tumor environment (8);
and intracellular interactions, such as transcriptional regulation and gene co-expression (9, 10),
signaling (11, 12) and metabolic pathways (13, 14), as well as protein interactions (15). These are
exemplified in Figure 2. It soon becomes evident that a major source of cancer complexity lies on
the many layers of interacting elements involved in the phenomenon.
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2. THE MULTI-OMICS PARADIGM

2.1. Multi-Omics in a Nutshell
Multiomics is the name given to the modelization approach
in biology hat makes use of more than one of the current
high-throughput biomlecular experimental techniques (a.k.a.

FIGURE 1 | Hallmarks of cancer complexity. The defining features of cancer

(3, 4) are intrinsically connected to the defining features of complex

systems (2).

FIGURE 2 | The many levels of interactions found in a cancer system. (A) Depicts intracellular interactions that can be measured via the different omic technologies,

such as genomics, transcriptomics, metabolomics, lipidomics, and so on. (B) Shows intercellular interactions, such as the ones orchestrated through immune

responses, microbial interactions (metagenomics) and other instances of cell-cell interactions.

omics) in order to characterize biological systems at the
phenomenological level. It is understood that every omic
contributes on a specific fashion to shape the actual biological
phenotype under study. For this reason, it has become evident
that there is a need for integrating frameworks to gather
and organize the knowledge gained with each experimental
approach into mechanistic or semi-mechanistic descriptions
of the biological phenomenon. This issue has been deemed
particularly relevant for the study of complex phenotypes, such
as cancer tumors (16).

The rapid development of sequencing strategies as well as
genotyping and expression microarrays led to the development
of gene models to account for the molecular aspects of biology
at the whole cellular level (and even at the organ and organism
scales). The coming of age and popularization (driven by
an almost exponential lowering of the costs) of next gen
sequencing techniques leads to an explosion of new approaches
to understand complex phenotypes that in turn have sped up the
rise of high throughput proteomics, metabolomics catching up.
Single cell technologies and a number of arising sequence based
approaches (ChIP-seq, ATAC-seq) are becoming usual tools of
biomedical and in particular cancer research (see Figure 3, for an
account of the fastly increasing number of PubMed publications
based on these omic tools).

In spite of this, the integrative approach to multi-omic
modeling is far from trivial due to the broad diversity of data
types, dynamic ranges and sources of experimental and analytical
errors characteristic of each omic. In spite of these facts, a number
of approaches tomulti-omic integration have been proposed [see,
for instance, discussions in Hernández-Lemus (17, 18)]. Said
approachesmake use of tools from statistics, probability, machine
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FIGURE 3 | Growth of interest in omics technologies in the twenty-first century: the number of Pubmed publications mentioning each omic technology in its title or

abstract measured yearly since the year 2000.

learning and network science to classify, explore and provide
guidelines for feature selection and their application is very much
rooted in the tenets of systems biology.

The systematic study of cancer given by multi-omics is
founded on the acknowledgment of a contribution of many
different factors in the development and maintenance of

the malignant state, including genetic aberrations, epigenetic
alterations, changes in the response to cellular signaling,
metabolic alterations, and beyond (19). Hence, by analyzing
cancer as a complex pathology, the systems biology paradigm
tries to gain insight into the molecular origins of the disease by
looking at the diverse contributions, from DNA mutations (both
germline and somatic), to deregulation of the gene expression
programmes, the phenomenon of hormone disruption, that may
or not be supplemented bymetabolic abnormalities, and aberrant
pathway signaling.

Cancer is also a multiscale pathology, aside from the
biomolecular events just mentioned there is the influence of
the environment and lifestyle that is known to be able to
modify the onset, development, and outcome of tumors and
their metastases. Multiomic analysis under a systems biology
framework makes possible to use the unprecedented power
of current high-throughput molecular and computational tools
to draw a more complete figure of the different players in
tumorigenesis and tumor establishment. At the same time, it
may provide us with new instruments and strategies useful in
basic and clinical research laboratories, but also in translational
medicine and therapeutic endeavors.

These different levels of description have been independently
studied for years. However, even if the advent of high-throughput
technologies has permitted the development of systems biology,
system-level models (conforming the theoretical foundations of
these multiomic studies) are still under development.

2.2. The Systems Biology Framework
In essence, the foundational basis of systems biology is
that of considering biological phenomena as systems, i.e.,
constructs formed by a large number of complex molecular
and environmental components interacting at different levels to
shape the functional features of said system. Tumor behavior,
for instance, is determined by a combination of changes in
genomic information that may (or may not) be associated with
abnormal gene expression profiles; affecting protein abundance,
but also modifying protein structure and folding, as well as
supramolecular assembly. Changes in the regulatory patterns
may also affect cell signaling mechanisms; and their responses.
Hence, the complex interaction of nucleic acids and proteins
in replication, transcription, metabolic, and signaling networks
are considered the ultimate causes for the functioning (or
misfunctioning, if preferred) of the tumor cell. We can notice
that these are interdependent phenomena that cannot be treated
separately, hence the need for integrative methodologies.

Another pivotal challenge in contemporary studies
undertaken following a systems biology view is hence data
integration. Data integration allows for the understanding of
the enormous datasets generated by experimental multi-omics.
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This is indeed a highly non-trivial task, since just the data
management of such large amounts of information represents a
challenge that has been called the big data paradigm.

3. THE ROLES OF COMPUTATION IN THE
AGE OF CANCER MULTI-OMICS

We have identified four main roles that computation plays in
the analysis of high-throughput data. These are the raw data
acquisition from high-throughput instruments; the processing
of raw data to quantitative data; the storage and management
of massive omics data, for instance in remote repositories; and
finally the deployment of data analysis models. These roles are
illustrated in Figure 4. In this section, we will discuss select
aspects of each of these roles.

3.1. Data Acquisition and Processing
The acquisition, processing, and manipulation of omic data
generated in high throughput experiments requires, due
to the very nature of these experiments (see Figure 5),
the use of specialized bioinformatics pipelines. As the
complexity of these datasets increases due to the natural

evolution of these technologies, so do the associated
challenges evolve (20). Bioinformatics workflow management
systems can be used to develop, maintain, and foster
reproducibility of a give pipeline or workflow. Examples
of these systems include Galaxy (21), Snakemake (22),
Nextflow (23), and the general purpose Common Workflow
Language (24).

It should be noted that a large number of tools for omic data
analysis are available as packages for the R language contained
in the Bioconductor project (25), a repository of bioinformatics
open source software. It is important, however, to acknowledge
the existence of other software ecosystems, such as the Biopython
project (26). Although the number of packages in Bioconductor
is greater than that found in Biopython [see for instance (27)],
the main takeaway should be that there is a large number of
tools available to researchers that can be used in any combination
suitable for their research question.

3.1.1. Genomics
The oldest of the omic technologies, genomic analyses focus on
the genomic sequence and its variations: insertions, deletions
(INDELs), single nucleotide variations (SNVs), copy number

FIGURE 4 | Computational tools are needed for high-throughput data acquisition, data management in repositories, data processing, and high-end analysis.
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FIGURE 5 | Samples for omics analyses can be obtained from “bulk” tissue, single cell data, or heterogeneous populations, such as metagenomes. Most current

omics data are generated using technologies either array-based, sequence-based, or mass spectrometry-based; although high-throughput imaging data is becoming

important in the clinical setting. Complementary techniques exist for the analysis of epigenetic states. Each combination of sample type, omic measurement and

analytical technology requires a specific bioinformatic pipeline for data acquisition and processing.

variations (CNVs), and so forth. The relationship between
genomic alterations and cancer is well-known (28).

Microarrays have long been used for genotyping.
Although specifics of microarray technology may vary across
manufacturers, most modern DNA microarrays can be analyzed
using well-established tools available in the Arrays (29). Such
tools can handle arrays for different genotyping tasks, including
SNP and copy number assays [for instance, copy number
detection from exome sequencing using CODEX (30)].

Although DNA microarrays remain in use, next generation
sequencing (NGS) technologies are quickly becoming
commonplace. The analysis of NGS data entails a workflow
that involves sequence acquisition and alignment to a reference
genome, A number of downstream analysis pipelines can follow;

for instance, a variant discovery workflow would involve variant

calling, filtering, annotation, and prioritization (31). The first
step to analyze NGS data is to use a sequence aligner tool on
the sequence data (stored in FASTQ format). Some popular
aligners are the stand-alone BWA (32), Bowtie (33), Bowtie2
(34), and SNAP (35), with aligned sequences being stored in
SAM (Sequence Alignment Map, text-based) or BAM (Binary
Alignment Map) files. These aligned sequences are the input for
downstream genotyping analyses (36, 37).

Such standards are indeed a matter of state-of-the-trade in
the academic research community indeed. Regarding pipelines
approved by regulatory instances, there is in fact an official FDA
guideline document to this end: “Considerations for Design,
Development, and Analytical Validation of Next Generation
Sequencing (NGS)—Based in vitro Diagnostics (IVDs) Intended
to Aid in the Diagnosis of Suspected Germline Diseases”

available for download at https://www.fda.gov/media/99208/
download. The Guideline document (99208) actually refers to
a Software Documentation Guideline: “General Principles of
Software Validation; Final Guidance for Industry and FDA
Staff” which is however quite outdated (last revised January, 11,
2002) (https://www.fda.gov/media/73141/download). SomeNGS
tools however are actually available as a web service at https://
precision.fda.gov/. For a review on these guidelines and tools
see (38).

3.1.2. Epigenomics
With the recent advent of high-throughput omic technologies
to probe chemical modifications in the tumor genomes it
has become more and more evident that such epigenomic
modifications are present and likely play relevant roles in many
cancers. These variations include DNA methylation and histone
modifications, both in oncogenes and in other cancer-associated
genes. Mutations in genes involved in epigenetic regulation have
also been found in several tumor types. The computational
analysis of epigenomic data may provide us new insights about
cancer initiation and progression. More relevant perhaps, such
studies will pave the way for a more efficient identification
of genetic and epigenetic biomarkers for diagnosis, prognosis
or response to therapy. These in turn, may accelerate the
development of novel therapeutic approaches.

Epigenomics often presents another view of functional
processes complementary to that of genomics. Sometimes
epigenomic techniques even allow for a better understanding
of genome-associated phenomena. Such is the case of high-
throughput immunoprecipitation assays, such as ChIP-Seq.
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ChIP-Seq and other experiments based on the analysis of short
reads show the effects of multi-reads, i.e., reads that map to more
than one genomic region. Determination of the origin of such
multi-reads indeed results critical for the accurate mapping of
reads to repetitive regions, such as copy number variants (39, 40).
Current computational approaches have been refined to cover up
for this phenomenon even at the single-cell level (41).

The epigenome contains the set of potentially inheritable
chemical modifications of DNA and histone proteins that
can control gene expression activity (42). There are several
mechanisms which are contained within the epigenomics
concept, each requiring a different high throughput molecular
technique for its measurement. Each of these techniques, in
turn, requires the use of a dedicated set of computational tools.
These include:

• DNAmethylation: The methylation state of a DNA region can
alter its transcriptional activity. This state can be measured
using either array-based methods or sequencing methods,
such as the popular whole-genome bisulfite sequencing
(WGBS) (43). Data from array based methods can be
processed using the aforementioned array packages, along
with dedicated packages, such as methylationArrayAnalysis
(44). Similarly, those obtained using sequence-based methods
can make use of dedicated tools, such as the bsseq (45) or
methyAnalysis (46) packages.

• Chromatin remodeling: Regions where nucleosomes are
sparse and physical access to the DNA sequence is enabled
are identified as open chromatin. Chromatin accessibility is
a dynamical and complex framework modulated by diverse
elements, including nucleosome occupancy and turnover rate,
histone modifications, ATP-dependent chromatin remodeling
complexes and even TF binding (47, 48). Open chromatin has
emerged as indicative of transcriptional regulatory potential or
activity across the human genome because most of the TFs
analyzed to date bind within open regions (49). Chromatin
architecture is modified by changing its accessibility affecting
gene expression rates. This remodeling can be controlled by
histone modifications, which include acetylation, methylation,
ubiquitination, and SUMOylation, among others. Overall
chromatin accessibility can be also measured by techniques,
such as ATAC-seq (50), a high throughput NGS technique
to assess genome-wide chromatin accessibility. Due to the
characteristic biochemical design of the assay ATAC-seq
is a faster and more sensitive analysis of the chromatin
accessibility than other alternatives, such as DNase-seq.

ChIP-seq (51) data is used to identify genomic locations
with an overabundance of proteins of interest; such
identification uses the so-called peak callers (52, 53). These
include SICER2 (54), PeakRanger (55),GEM (56)MUSIC (57),
PePr (58), DFilter (59), andMACS (60); benchmarks for these
algorithms can be found at https://github.com/skchronicles/
PeakCalling.

MACS is a popular peak caller that uses dynamic
Poisson distribution; its successor, MACS2 (61), improves
the algorithm to, amongst other things, make it more
suitable for calling differential regions. Differential binding

analysis (that is, identifying sites in which exhibit a different
binding behavior between biological conditions) can be useful
to identify relevant regions that may be driving cancer
phenotypes, using ChIP-seq data. Tools for this task include
DiffBind (62), a package that provides functions to handle
the results of peak set callers, such as MACS. Another tool
for this task is csaw (63), useful for de novo detection of
differentially bound regions using a sliding window approach.
In-depth comparison of differential ChIP-seq analysis tools
can be found in (64).

• Chromosome conformation: The three-dimensional
organization of the genome allows for interactions between
regions that are distant in terms of sequence, even belonging
to other chromosomes. These higher-order chromosome
structures are a current area of research in oncology (65).
Chromosome configuration capture techniques are able to
quantify interactions between genomic loci. These C-techs are
based on the original 3C, Chromosome configuration capture
(66); able to quantify interactions between a single pair of loci.
It was followed by: 4C (Chromosome configuration capture-
on-chip) (67), which captures interactions between one locus
and all others; 5C (chromosome conformation capture carbon
copy) (68), which captures all interactions between two sets of
loci; and Hi-C (high-resolution chromosome conformation
capture) (69, 70) to detect interactions between all possible
loci pairs. Development of computational analysis tools for
chromosome conformation capture data is ongoing, although
there are available packages for the detection of significant
interactions for all these technologies (71–73).

It has been known for some time that higher order chromatin
arrangements are associated with chromosomal alterations in
cancer. For instance, it has been argued that spatial chromosome
conformation and negative selection may be powerful driving
forces behind somatic copy number alterations (74). More
recently, chromatin conformation capture has allowed the
identification of putative pharmacological targets in breast cancer
(75). Genomic loci interactions may even affect the expression of
biomarkers related to hallmarks of cancer, such as hypoxia (76).

Packages, such as methylPipe and compEpiTools provide
an integral platform for the comprehensive and integrative
analysis of the first two classes of epigenomic data (77),
whereas ATACseqQC (78) is a package offering quality control
tools for ATAC-seq data, while esATAC (79) offers a whole
analysis pipeline and the GenomicInteractions package (80)
offers a complete framework for the analysis of chromosome
conformation data.

3.1.3. Transcriptomics
Transcriptomic analyses are used to measure the presence and
abundance of RNA in a given physiological context (81). Perhaps
the most common application of transcriptomic technologies
is to measure gene expression. The gene expression profile of
a phenotype can be used as a barcode of its biological state.
Such barcodes can be compared, through differential expression
analyses, to pinpoint cellular changes in cancers (82). The
expression profile is the product of the gene regulatory program
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encoded in the genome and the epigenome. By measuring gene
expression, we are indirectly capturing the regulatory changes
that are at the core of the disease.

The development of gene expression microarray technology
(83) has made gene expression measurement more technically
and economically viable than the measurement of protein
abundance. Therefore, methods for the measurement of
biological activity (i.e., pathways) have been developed with
transcriptomic data in mind (84). Studying the molecular
phenotype of cells via transcriptomics has become an invaluable
tool providing a proxy to the functional state of cells and its
regulatory interactions, both in cancer (85, 86), and in healthy
phenotypes (87). Nevertheless, it should be noted that the
correspondence between gene and protein abundance is far from
perfect (88), which highlights the need for multi-omics.

Beyond gene expression, whole transcriptomic analyses
involve the measurement of non-coding (nc) RNA, such as
micro-RNA (miR), long non-coding RNAs (lnc-RNA), small
nucleolar, Piwi-interacting, enhancer RNAs, among others (89,
90). The role of these transcripts, particularly in terms of their
contribution to the regulatory program, remains an active area
of study.

As previously mentioned, transcriptomic technologies are
one of the most developed omics, second only to genomics
itself. Measurement of transcript abundance can be done using
either expression microarrays or RNA-sequencing (91, 92).
Each methodology has technical considerations, but the general
steps for their analyses are similar: acquire and preprocess
data, removing technical artifacts; quality control; and data
normalization. The resulting data can be represented as an
expression matrix: an NxM matrix where rows represent
transcripts, and columns represent samples (or observations).
It should be noted that most expression pipelines are oriented
toward differential expression analyses [see for instance (93)];
this should be taken into account in case that is not the
intended use-case.

Starting points for RNA-seq data analysis include either
alignment based methods, such as Bowtie (33), and STAR (94),
or alignment-free methods, such as kallisto (95) and Salmon (96).

Cancer-related omic experiments often rely on specific, tailor-
made analytics. One instance of this is provided by alignment-
free RNA-Seq analysis methods, such as the ones performed
by kallisto, Salmon, etc. Alignment-free methods (AFMs) are
particularly well-suited to study cancer transcriptomics to look
up at the role and abundance of fusion transcripts that may give
rise to chimeric proteins (97, 98). Another reason behind the
use of AFMs is that it is known that different RNASeq pipelines
present differences that may be important when analyzing cancer
genomes and transcriptomes (99, 100).

Further require different tools for quantification, quality
control, and normalization of expression data. For instance,
a popular pipeline is composed of the aforementioned Bowtie
as a short read aligner, TopHat (101) for the identification of
slice junctions, Cufflinks (102) for transcriptome assembly and
differential expression analysis, and CummeRbund (103) for
result exploration; it should be noted that, while this pipeline is
still widely used and maintained (e.g., Bowtie2 latest release was

02/28/20), other approaches are been gradually embraced by the
community (104); for instance, the HiSat2 (105), StringTie (106),
and Ballgown (107).

In the case of tools like STAR, we need to be aware that
fusion detection using STAR-fusion is mainly limited by the
length of single-end reads. The STAR-fusion wiki (https://
github.com/STAR-Fusion/STAR-Fusion/wiki) indicates the need
for at least 100 base length. In the case of other approaches,
such as FusionHunter (108) the authors recommend to align
to a pseudo-reference and discard junction spanning reads
with <6 bp matches on either gene. Arriba is a relevant tool
to call for gene fusions, based also in the STAR-alignment
(https://github.com/suhrig/arriba/). Arriba was the winner of
the DREAM SMC-RNA Challenge (https://www.synapse.org/#!
Synapse:syn2813589/wiki/401435) (109).

An advantage of the modular design of these pipelines is
that it is possible to combine tools from different workframes,
depending on experimental and analytical needs: For instance,
Salmon provides tools to connect with differential expression
tools, such as DESeq2 (110), edgeR (111), limma (112), or sleuth
(113). A detailed discussion of these methods is beyond the
scope of this article; please see Conesa et al. (114) for an
in-depth review.

3.1.4. Proteomics
Proteomic analyses are used to identify and quantify the set of
proteins present within a biological system of interest (115). The
study of cancer proteomes is promising as a way of identifying
biomarkers and therapeutic targets (116). This is not surprising:
proteins are the molecular unit from which cellular structure and
function arises.

Historically, high throughput proteomics technologies have
developed at a slower pace than genomics and transcriptomics
technologies. Microarray approaches to proteomics have been
developed, with varied levels of success and applications (117,
118). However, the bigger breakthroughs have come through the
use of mass spectrometry (119).

Various steps of proteomics analysis involve data analysis
(120). During data acquisition, the detected molecular fragments
must be identified. This is often done by comparing fragments
to databases in real-time (121, 122). Later, the assembly of
proteins from identified peptide fragments requires another
set of computational methods (123). The development of such
methods remains an active area of research (124, 125). The
Bioconductor offers a streamlined set of tools for the management
of proteomics data, from data processing to functional analysis
(126). Another alternative for protein quantification is the
maxquant toolset (127).

3.1.5. Metabolomics and Lipidomics
Metabolic alterations are important contributors to cancer
development (128). Cancer metabolomics has become an
important research topic in oncology (129), with the promise
of providing novel insights on cancer development and
potential therapeutic options. Lipidomics is actually a subset of
metabolomics (130). The study of cancer lipidomics may lead to
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the identification of biomedical important findings, such as novel
biomarkers (131).

Like proteomics before, metabolomics and lipidomics studies
have been possible thanks to the use of mass spectrometry. The
analytical considerations for the extraction and quantification of
these types of compounds have some differences to those
used for proteomics. This is expected, as the chemical
nature of metabolites and lipids are fundamentally different
(132, 133). In turn, bioinformatic and chemoinformatic
approaches to high-throughput metabolite profiling exhibit
some modifications (134).

Analysis frameworks for metabolomic and lipidomic data are
currently available. Themetab package (135) provides an analysis
pipeline for metabolomics derived from gas chromatography—
mass spectrometry data. The metaRbolomics package (136) is
a general toolbox that goes from data processing to functional
analysis. Finally, the lipidr package (137) is a similar framework
focused on lipidomics data.

3.1.6. Unraveling the Complexity Within Samples:

Single Cell, Imaging, Microbiome
The aforementioned technologies were all developed for the
detection and quantification of analytes extracted from a complex
biological matrix, obtained from tissue, plasma, or a similar fluid.
As such, the data from these omics is an aggregate of the different
cellular contexts present in the sample. The environment within
and surrounding cancer tumors is notably heterogeneous (138,
139). There is knowledge to be gained by recovering the omics
diversity within samples.

Cancer is an extremely heterogeneous disease at the cellular
and molecular level. Tumor heterogeneity caused by the
concurrence of multiple cell lineages and differentiation stages,
determined to an extent by the processes of clonal evolution. This
has led to an early adoption of single cell analysis techniques.
The case of single cell sequencing to study the genomic and
epigenomic features of the different cell populations within a
tumor by considering the characteristics of individual cells has
revealed as an appealing approach to deal with said cell-to-cell
variability (140–142).

Cancer cell heterogeneity also exists beyond the genome.
Tumor evolution under complex environmental scenarios
often leads to variability in epigenetic modifications. Single
cell sequencing and imaging techniques have proven to be
quite effective to characterize cellular plasticity induced by
epigenomic phenomena (143). Aside from scMethSeq, and
scDNAse Seq, other techniques, such as single-cell chromatin
accessibility assays are starting to shed light to how epigenomic
subpopulations in cancer may have the potential to impact tumor
features, such as drug sensitivity and clonal dynamics (144).

Single-cell omics analyses rely on experimental techniques for
the isolation of single cells from a sample, using microfluidics
or fluorescence-activated cell sorting methods (145). Single-cell
RNA-seq (scRNA-seq) is currently the most developed high-
throughput omics technology for individual cell analysis (146).

Data from scRNA-seq experiments can be thought to be very
similar to so-called “bulk” data. Data from scRNA-seq is, in fact,
sparser, more variable, and with more complex expression values

distributions. As such, data analyses techniques may need to
account for different assumptions than their “bulk” counterparts
(147). Again, the development of these novel bioinformatics
tools is an active area of research (148). The Bioconductor
ecosystem has a complete framework for the analysis of scRNA-
seq from low-level (149) to functional analyses (150). Scanpy
(151) provides a toolkit for single-cell gene expression analysis
in a Python environment. Another single-cell genomics toolkit is
Seurat (152) for R.

Integration of single-cell RNA-seq with other profiling tools
is an important research area (153); as along with single-cell,
there are other technologies that can provide a more complete
picture of the cancer heterogeneity. High throughput imaging
techniques (154) can be generated and computationally analyzed
(155, 156). Imaging techniques can be used along with omics
to recover the spatial distribution of molecules within cells and
throughout tissues. Tools, such as CellProfiler (157) allow for
a high-throughput analysis of data. Imaging techniques can be
combined with single-cell methods: for instance, MERFISH can
simultaneously measure copy number and distribution of RNA
in single cells (158); Slide-seq (159) can measure transcriptomes
at a high spatial resolution.

Space-resolved transcriptomics or spatial transcriptomics
(ST) is a set of in situ transcript capturing methodologies aiming
at quantification and visualization of gene expression patterns
in individual tissue sections or regions. ST methods have indeed
revealed relevant tissular phenomena linked to tumor evolution
and in some cases have been able to allow the prediction of
clinical outcomes in, for instance, breast cancer subtypes (160).

ST mapping of prostate tumors, on the other hand, have
resulted key in the identification of gene expression gradients
in stroma adjacent to tumor regions. This in turn has resulted
in patient re-stratification based of tumor microenvironment
features (161). A similar approach has been taken to trace tumor
advance inmalignantmelanoma (162). A combination of ST with
scRNASeq has led some researchers to propose the concept of a
“tumor atlas,” a roadmap to navigate tumor spatial and cellular
heterogeneity (163).

Multi-omic analysis is not devoid of technical and logistic
conundrums. Perhaps the most obvious is the availability of
the different sample types from a single source in the same
experiments. Cell cultures may provide a way out to this problem,
however in vitro conditions are often not resembling some
aspects of interest in complex phenotypes, such as cancer.
In recent times, three dimensional cell culture techniques
have allowed the design and development of more realistic
models, such as the case of organoids and tumoroids. These
models may represent a good compromise between cell line
studies and biopsy-captured tissue experiments (164). Multi-
omic approaches are starting to be applied on lab-grown
organoids with relative success (165, 166). In order to analyze
such data some novel computational tools are being developed
and adapted (167).

The role of the immune system in cancer response is another
area of active research. CITE-Seq is an RNASeq method that
incorporates epitope analysis thus leading to semiquantitative
information regarding surface protein abundance via antibody
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assays, even at the single cell level (168). This novel technique
is starting to be applied to provide the answer to fundamental
questions in oncology, such is the case of tumorigenesis (169)

Finally, the role of the microbiome in cancer is being
recognized (170); the integration of metagenomic, and perhaps
meta-omics data (171), could provide key insights into cancer
pathogenesis and therapeutics.

3.2. Data Management
The push for open data in the field of biomedical genomics
since the gestation of the Human Genome Project has led to
the emergence of a rich Genomic Commons (172). Making
data available in public repositories makes for faster scientific
discovery, although there are challenges to be overcome, both
ethical/legal (173), and technological.

Challenges of data management include defining the type of
data to be stored and how to store it; the policies for data access,
sharing, and re-use; and long term archiving policies (174).
Arguably, the most successful repository of cancer multiomics is
NIHs Genome Data Commons (GDC) (175). The Genome Data
Commons contains all data generated by the Cancer Genome
Atlas (TCGA) project (176); although it should be noted that
not all data is publicly accessible. The data is organized as a
directed graph comprised of interconnected entities (Figure 6),
with each entity having an associated set of properties and
links. Data is publicly accessible either through the gdc-client
command line tool, the REST API for programmatic access to
the database, or through dedicated packages, such as rtcga (177).
A recent account by The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium (PCAWG) of these resources and
analyses is presented in (178). Furthermore, a larger collection
of datasets can be accessed through the Broad Institute’s Firehose
(http://gdac.broadinstitute.org/); cloud computing enabled data

access is provided through the Cancer Genome Collaboratory
(https://cancercollaboratory.org/).

The impact of TCGA at the forefront of multiomics research
is inarguable. As a publicly available resource, it provides data
for method development and validation. This is used by a lot
of current projects. However, there are other datasets with either
single layer ormultiomic datasets that can also be integrated. And
wetlab researchers still carry out their projects, contributing to
the cancer multiomics community. Integrating data from both,
local experimental projects and large collaborative endeavors,
such as TCGA is indeed a common practice in many places, such
as our institution, the National Institute of Genomic Medicine in
Mexico. Doing so allows to contrast specific hypothesis for the
different research groups with the statistical power obtained via
the much larger datasets generated by international multicentric
collaborative projects.

As mentioned, it is possible to extract a lot of knowledge
from the systematic re-analysis of data available in large public
datasets. Perhaps, the more comprehensive of these databases
is the one by the TCGA/Genome Data Commons/International
Cancer Genome Consortium, TCGA. Retrieving the data via
their Application Programming Interface (API) (https://gdc.
cancer.gov/developers/gdc-application-programming-interface-
api) demands some familiarity with command line tools and
coding that may be beyond of most non-bioinformaticians. The
project’s data portal (https://portal.gdc.cancer.gov/) provides
easy to use interfaces, but may be limited on its application to
broader analyses. To date there is a number of commercially
available platforms that provide a gentler access to the TCGA
data. Such is the case of Qiagen’s OncoLand database (https://
digitalinsights.qiagen.com/products-overview/discovery-
insights-portfolio/content-exploration-and-databases/qiagen-
oncoland/) and the cloud-based analytics solution Seven Bridges

FIGURE 6 | A representation of the data structure used in to store the Cancer Genome Atlas within the Genome Data Commons. This is represented as a directed

graph. This is a simplified illustration of the one found at https://gdc.cancer.gov/developers/gdc-data-model/gdc-data-model-components.
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(https://docs.sevenbridges.com/docs/tcga-data). A limitation,
aside from being subscription based alternatives that require a
payment is that they are not customizable, which means that not
all possible (nor desired) analysis may be performed.

There are, however a number of resources not only to
access the data but to actually perform different levels of
downstream analysis. Such is the case of imputation approaches
to missing data in the TCGA database (179) (https://github.com/
mrendleman/MachineLearningTCGAHNSC-BINF/).

Perhaps, the best combination of usability and versatility
is present in the TCGA Workflow suite available as an
R/Bioconductor package (180) (https://www.bioconductor.org/
packages/release/workflows/vignettes/TCGAWorkflow/inst/
doc/TCGAWorkflow.html).

4. COMPUTATIONAL TOOLS FOR
MULTI-OMICS DATA INTEGRATION

An often-asked question is why try to integrate multiple
omics technologies using complex models. Perhaps the simplest
argument is that the biological phenomena is not comprised of
independent layers of biological features: integrative models will
be, due to this simple fact, closer to the system of study. As
omics technologies become available, researchers have used them
together to try and capture a better description of the phenomena
(see Figure 7).

Improving our current cancer diagnostic capabilities is a
major goal of biomedical research: the role of molecular
technologies in the development of these tools has long been
recognized (181). It is expected that multi-omic integration is
able to provide better predictive tools than single molecular
technologies, due to the fact that each technology is capturing
just a slice of the whole complex pathological system; multi-
omics data are expected to be of value for both basic and
clinical research, as long as they are able to recover biological
insights beyond those obtainable from the simple addition of
each analysis layer (182, 183).

It may soon become evident that the formalisms that can lead
to such level of description are, by necessity, complex (184). A
remaining question is what multiomic combinations are able to
achieve better diagnostic results. Selecting this optimal omics
combination is not trivial, since there are practical constraints
(such as economic and technical limitations) in the clinical
setting in which such diagnostic tools are to be deployed (185).
Computational tools and bioinformatic approaches play an
important role in the design of such studies. A list of such tools is
presented in Supplementary Materials as Table 1.

4.1. Multi-Omics Data Representation and
Preparation
The success of a computational method could arguably
be influenced by the design principles implemented in its
data representation. The MultiAssayExperiment package
(186) provides an eponymous data class to contain multi-
omics experiments. Like other Bioconductor classes,
MultiAssayExperiment is object-oriented. It can contain the

FIGURE 7 | Combinations between omics technologies. Width indicates

number of co-occurrence in literature. Genomics, transcriptomics, and

proteomics are the most common pairs.

information of different (multi-omics) experiments, linking
features, patients, and experiments. Furthermore, by sharing
design principles with the rest of the S4-Bioconductor classes, it
is highly interoperable.

An important issue with large scale multi-omics studies is
the problem of missing and mislabeled samples. Whether by
technical limitations or human error, the samples associated with
a given patient may not have all measurements; or samples from
two different patients may get mixed-up. There are packages
available to handle these problems. The missRow package
(187) can be used to handle missing data, combining multiple
imputation with multiple factor analysis. The omicsPrint package
(188), in turn, can be used to evaluate data linkage through the
use of linear discriminant analysis.

The STATegRa (189) project provides a framework for multi-
omics data analysis and integration: these are MixOmics (190),
descended from the integrOmics project (191); and just like
the Bioconductor project, the major advantage of such projects
is the increased interoperability due to the sharing of design
principles. For instance, within the STATegRa project, there is
an Experiment Manager System (192); MOSim (193) a tool that
provides methods for the generation of synthetic multi-omics
datasets. These datasets can be used for the benchmarking and
validating of other integration tools; and an experimental multi-
omics dataset (194).

4.2. Multi-Omics Data Integration as a Data
Science Problem
For this review, we approached these methods from a data science
perspective, considering that each method is in essence solving
a machine learning task (or set of tasks). In Figure 8 we show

Frontiers in Oncology | www.frontiersin.org 10 April 2020 | Volume 10 | Article 42347

https://docs.sevenbridges.com/docs/tcga-data
https://github.com/mrendleman/MachineLearningTCGAHNSC-BINF/
https://github.com/mrendleman/MachineLearningTCGAHNSC-BINF/
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.bioconductor.org/packages/release/workflows/vignettes/TCGAWorkflow/inst/doc/TCGAWorkflow.html
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


de Anda-Jáuregui and Hernández-Lemus Computational Multi-Omics

FIGURE 8 | Machine learning has many applications in cancer and multiomics.

some of these mappings, although it should be noted that these
categories may be fluid: an unsupervised clustering analysis can
become the basis for a supervised classifier, with diagnostic and
prognostic applications. This is the story of the PAM50 algorithm
for breast cancer (195).

4.3. Exploratory Data Analysis
Exploratory data analysis (EDA) is a vital first step in omics
analyses (196). Through EDA the nature of the data can
be understood, allowing for better decisions at a further
modeling step.

Unsupervised learning approaches can provide a hypothesis-
free understanding of the data behavior. This will reflect the
nature of the underlying biological phenomenon. Unsupervised
clustering analyses attempt to group samples based on the
similarity of their measured features. The assumption is that
this unsupervised classification will recover relevant biological
differences. Multi-omics can increase the efficiency of such
approaches (197).

Multi Omic data analysis is often performed with the aim
of unveiling non-trivial molecular and systemic interactions
that are difficult or impossible to see if one relies on a single
omic approach. However, since we are tacitly assuming that
the different omic levels of description may have synergistic
effects that are key to develop more accurate models of tumor
biology. Since multi omic approaches may generate a plethora of
interdependent data it is useful to design analytical strategies for
dimensionality reduction, feature selection and integration of all
this information.

Aside from intelligibility, there are additional reasons to
make dimensionality reduction schemes, one of these is that a
multi omic study combines different information sources, hence
dramatically increasing the number of features, often keeping

the number of samples constant, in order to preserve statistical
power we need to rely only on the most informative variables
(198–200).

Computational tools to this end have been developed, such as
the following: https://www.bioconductor.org/packages/release/
bioc/html/mixOmics.html https://bioconductor.org/packages/
release/bioc/html/STATegRa.html For an extensive list of
computational tools in the context of cancer biology, see (186).

One can make use of dimensionality reduction techniques
in order to embed multi-omic data observations into a lower-
dimensional space that can be used for either manual (i.e., visual)
inspections or as the input for unsupervised clustering (or other
analysis tools). Popular dimensionality reduction methods:

• Principal Component Analysis (PCA) is a classical (201)
method based on an orthogonal transformation of the set
of observations.

• T-distributed stochastic neighbor embedding (t-SNE) (202) is
a method based on the minimization of the Kullback-Leibler
divergence between the probability distribution of pairs of
high-dimensional objects.

• The Uniform Manifold Approximation and Projection
(UMAP) (203) is a non-linear technique in which data are
projected into a Riemannian manifold.

Data visualization is an important part of EDA: the graphical
representation of data can be sufficient for the identification of
complex patterns (204). Visualizing high-dimensional biological
data can be helpful from a purely data-driven point of view: for
instance, to understand the variability within a phenomenon.
Combinations of dimensionality reduction, data clustering, and
visual inspection can be effective to identify subpopulations
within a dataset. The most common visualization for these tasks
is perhaps the scatterplot, but it is far from the only: for instance,
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hexbins (205) can be used to explore sc-RNAseq data, which can
be useful to overcome overplotting problems related to the order
in which points are drawn in the canvas.

Visualization can also be coupled with other biological
information, for instance locating the genomic regions in which
epigenomic features are found. Visualizations, such as the
Circos plot (206) can be used for the detailed representation
of multi-omics data and their location in specific genomic
regions; The omicCircos (207) implementation is compatible
with the standard data classes used inBioconductor. The
multiOmicsViz multiOmicsViz package is useful to visualize
the effects of one omics layer to another, visualized in within
the spatial chromosome context. The Gviz package (208)
provides a full R graphics system solution for genome browser-
style visualizations. Such representation is useful to represent
the behavior of different experimental layers (as tracks) in
a sequence context. For ChIP-seq data visualization, tools
like PAVIS (209) may be used. Single Cell RNA-seq data
visualization suites, such as SingleCell Signature Explorer (210)
can be useful for exploratory analysis of such datasets. In
the case of chromatin capture data, visualization toolboxes,
such as HiBrowse (211), the Epigenome Browser (212), and
Juicebox (213). For a thorough review of Hi-C visualization
consult (214).

Common exploratory data analysis tools are implemented
either in base R or as packages from CRAN (since their
use is not necessarily limited to biological data). However,
there are packages providing integrated EDA tools for multi-
omics and oncology. The OMICsPCA package (215) provides
omics-oriented tools for PCA analysis. The CancerSubtypes
package (216) contains several data preprocessing, quality
control, and clustering methods, focused on the identification of
cancer subpopulations from multi-omics data. Biocancer (217)
provides an interactive multi-omics data exploratory toolkit.
The omicade4 package (218) provides an implementation of
multiple co-inertia analysis (MCIA), another dimensionality
reduction technique; these tools were used for the integration
of transcriptome and proteome data from the NCI-60 cancer
cell line panel. The Multi-omics Autoencoder Integration
(maui) is a tool for multi-omics data analysis for Python. It
allows for latent factor model coupled with artificial neural
networks for multiomics data integration. iClusterPlus is a
Bioconductor package based on the original iCluster (219)
algorithm for integrative cluster analysis combining different
types of genomic data.

4.4. Statistical Models: Classificators,
Predictors, and Feature Selection
Exploratory methods provide a useful description of biological
phenomena. Nevertheless, in the oncology context, the
identification of actionable elements is most desired, to
generate translational value. The generation of models and
feature selection strategies can lead to such results.

In this context, statistical models are computational (and
thus mathematical) representations of the relationships between
observed variables. These models can be useful to solve a given

task based on some input data (220). Examples of these tasks
include the classification of samples and the prediction of the state
of a feature of interest.

Classification models have important biomedical applications
(185). If a classification is able to discriminate between
physiological states it can have translational use: A model that
discriminates between health and disease has diagnostic utility; A
model that discriminates between different disease outcomes has
prognostic utility, which can be used for stratification purposes.
Molecular classifiers have been quite successful in oncology:
perhaps the best example being breast cancer (221). Classification
models can be developed using supervised methods (that is,
the model is trained with class information); but unsupervised
methods, such as the previously discussed clustering, may
be able to recover groupings that capture biological and
clinical differences.

Predictive models can provide insights into the molecular
mechanisms driving physiological states. These can reveal
the interactions between different omics, as well as between
individual biomolecules. Furthermore, predictive models can
have translational applications, including their use in prognostic
tools (222).

Feature selection consists in the selection of a subset of
measured variables that are most informative: that is, they
contribute the most for the model to accomplish its task. Proper
feature selection is important for biomedical models (223), as (1)
removing uninformative (“irrelevant” or “redundant”) features
simplifies the model and increases its performance; and (2) a
smaller set of features is less expensive to measure, increasing the
translational potential of a given model.

Common applications of statistical models in the clinical
context of cancer are the prediction of susceptibility, recurrence,
and survival (223). Additionally, classification and association
models are regularly used for the interpretation of molecular
studies of cancer. For instance, biomarker discovery (224) is
an often sought target for modeling based on biochemical and
multi-omics analyses. This is an important area of study, since
actionable biomarkers are not particularly common (225).

4.4.1. Implementations and Use-Cases
Novel tools for the implementation of oncology models using
model data are being released constantly. Many of these
packages combine exploratory, supervised, and unsupervised
tools, providing a wide range of analysis tools. mixOmics (190)
is a self-described omics data integration project; it includes
an eponymous package that provides different exploratory and
integrative multivariate methods, including (independent) PCA,
Canonical Correlation Analysis, Partial Least Squares regression
(PLS), and PLS-Discriminant Analysis (DA). Part of the larger
project is the Data Integration Analysis for Biomarker discovery
using Latent Variable approaches for ‘Omics studies (DIABLO)
framework, which has been used for the identification of a multi-
omics signature of breast cancer molecular subtypes (226).

Other tools also follow this combined design principle. The
ropls package (227), for instance, incorporates the tools for
PCA, as well as (Orthogonal) PLS. Multi-Omics Factor Analysis
(MOFA) is implemented in the eponymous package (228).
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This factor analysis model has been used for the unsupervised
detection of groups in a leukemia dataset, and the selection of
informative multi-omic features associated with oxidative stress.
OmicsMarkeR (229) also provides a variety of classification and
feature selection tools; originally developed for metabolomics,
this tool has been used for the study skin cancer progression
(230). Some packages include different classifier methods to
generate an ensemble model; such is the case of Biosigner (231)
which combines PLS-DA, Random Forests, and Support Vector
Machines to select discriminant features across omics.

We agree with the assumption that multi-omics specific
tools can improve workflows by adhering to a single design
philosophy. However, we also agree that this is convenient,
but not necessary. For instance, a diagnostic panel for
pancreatic cancer was recently identified with a Random
Forest implementation (232) using genomics, transcriptomics,
and immunohistochemistry data. In another study, biomarker
candidates for pancreatic cancer are identified using a Support
Vector Machine on miRNA and gene transcriptomics (233).

Predictive models can be used to identify the contribution
of one omics layer to the activity of another. For instance,
epigenomix (234) uses Bayesian mixture models to integrate
ChIP-seq and gene transcription data. The Integrative analysis of
Multi-omics data for Alternative Splicing (235) package integrates
expression, sQTLs, and methylation to provide mechanistic
insights behind the manifestation of alternative splicing.

Predictive methods have been used to integrate multi-
omics with other sources of big data, with publicly available
implementations. The packages rexposome and omicRexposome
(236) have been used to study the exposome, defined as
the set of environmental exposures. Using multi-canonical
correlation analyses and multiple co-inertia analysis, exposome-
wide associations have been made to multi-omic data. The
OmicsLonDA package (237) offers a method that uses linear
mixed-effect models and smoothing spline regression models to
identify time periods with differential omics levels. A highlight
of this package is the consideration for the use of physiological
measurements from wearable sensors, which may provide
applications for nowcasting, the prediction of near-future states.

4.4.2. Functional Aggregation
One could argue that analysis methods can be more informative
if there is a way of associating the findings to the wider body
of biomedical knowledge. Mapping omics data to functional
features, such as pathways and functional genesets, is a strategy
that can provide such readily interpretable results. Functional
enrichment approaches, such as over-representation analysis
(ORA) and gene-set enrichment analysis (GSEA), are effectively
feature extraction methods that can be used as biologically
relevant dimensionality reduction methods. The results of such
methods can serve as starting points for more complex models,
such as interactions among functions (238). For a detailed
discussion of functional analysis, see (84).

The development of methods for effective functional
enrichment based on multi-omics data is ongoing. Multi-omics
gene-set analysis (MOGSA) (239) approaches the problem by
using multivariate analysis, and using projections of data and

genesets to lower dimensional spaces, to generate an enrichment
score.Massive integrative gene set analysis (MIGSA) (240) takes a
different approach, making independent functional associations
for each omics layer (using ORA and Functional Class Scoring).
Instead of providing an aggregated measurement, the functional
associations of each layer are stored in a special data structure,
allowing flexible analyses. This method has been used to
functionally characterize breast cancer molecular subtypes from
a multi-omics perspective.

Functional aggregation can be used as the basis for other data
analysis tasks. In pathwayPCA (241), exploratory data analysis is
done by analyzing the functional enrichment of each omics set
separately, and aggregating them via consensus. This method was
used to study heterogeneity in an ovarian cancer dataset. In the
original work for the Divergence analysis (242) method for high-
dimensional omics data analysis, the authors evaluate the effect
of using functional aggregation for their data classification task.
Functional aggregation methods are an important part of high-
throughput drug initiatives, as can be seen by their prominence
in the iLINCS platform (243).

4.5. The Network Paradigm
As we have stated throughout this work, biological phenomena
are complex, interconnected systems. The data that we recover
from high-throughput multi-omics is not isolated. Any biological
system is not just the sum of its parts, but the sum of its
biological elements and their relationships. With this in mind, the
integration of high-throughput data within a network paradigm
becomes appealing. Some advantages of a network approach to
multi-omics integration are:

• A network representation of multi-omics data can be studied
using all the foundations and tools of network science
(244). Network topological parameters can be associated
with important biological features; furthermore, dynamical
processes can be modeled over networks.

• As previously noted, the functional level of biological
description is fundamentally composed of molecular
interactions. In other words, measurable functions can be
thought to emerge from biological networks. Functional
analyses can benefit from considering the way in which the
participating molecules interact.

• The integration of interaction information can lead to more
informative models (245).

A network perspective can enhance every aspect of the
multi-omics analysis. For instance, mapping omics data to
pathway networks can provide an opportunity to biologically
contextualize the data. A classic tool for this is the pathview
(246) package. The Graphite (247) package is a more flexible
alternative, as it allows the visualization of pathways from
different data sources, and provides proper graph objects that can
be manipulated using network visualization tools. Recently, the
metaGraphite package provided a major update to the original
tool, effectively incorporating multi-omics through the addition
of a metabolomics layer.

Network approaches can be used for classification and
prognosis. For instance, themicrographite (248) package provides
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a method to integrate micro-RNA and mRNA data through
their association to canonical pathways. This approach has been
useful in identifying key micro-RNAs in myeloma (249), primary
myelofibrosis (250), and ovarian cancer (251). Mergeomics (252)
integrates data from genomic, epigenetic, and transcriptional
association studies through a functional enrichment method, the
results of which are used as the basis for a network construction;
however, this tool has not been used in a cancer context. pwOmics
(253) is another tool that leverages biological network knowledge
to integratemulti-omics data. In particular, this tool is well-suited
for the study of time series analyses.

While mapping data to predefined networks can be useful
to gain a much-needed biological context, high-throughput
technologies offer the opportunity to actually infer networks from
the data itself. With such approach, data analysis problems can
be transformed into network analysis problems. For instance,
feature clustering becomes network module detection, which
can be then used as the basis for a functional enrichment
analysis (254).

While network reconstruction from omics data can be
a powerful tool, it should be stated that every network
reconstructed from data has an underlying hypothesis, which
defines what the links between elements represent. This
hypothesis should be at the center of any interpretation of the
topological or functional associations recovered from a network.
Furthermore, one must remember that comparison between
reconstructed networks of different biological conditions will
yield information about biological differences only if the
method for network reconstruction does not deviate for each
condition. For a discussion on this subject, see (255). This
point is particularly relevant when discussing multi-omics data
integration, as many of the network reconstruction methods
available were developed for gene expression data. Proper
validation of a method should be conducted before using it with
other types of data.

There are some recent implementations of network
reconstruction methods that have been developed with
multi-omics data in mind. MAGIA2 (256) is a tool for the
reconstruction of micro-RNA and transcription factor regulatory
circuits; it has been used for the analysis of expression regulation
in the NCI60 cell panel. The Discordant method (257) uses
a mixture model to identify differential correlation: that is,
statistical dependencies between feature pairs that are lost or
gained from one biological state or another. This method has
been evaluated for its use with different types of omics data.
The Netboost (258) is a network reconstruction method infers
statistical dependency based on multi-omics data, and uses a
modularity approach to reduce dimensionality; the method has
been used for the classification and survival analysis of acute
myeloid leukemia data. AMARETTO (259) identifies pairwise
relationships between different omic layers to select cancer
driver genes. A module detection approach is used to construct
a dimensionally reduced module network, which is further
analyzed to identify molecular signatures.

Probabilistic network reconstruction is a powerful data
analysis technique. In such a model, features are connected
based on an information-theoretical similarity measure, such
as mutual information, between their expression profiles.

Unlike correlation metrics (260), mutual information can
capture non-linear relationships between features, which makes
it suitable for the analysis of transcriptomics (261). We
have applied these methods for the reconstruction of micro-
RNA and gene co-expression bipartite networks with minor
adjustments; the analysis of such networks has yielded interesting
insights on the nature of functional control by micro-RNAs
(262). A current research interest the authors of this work
is the extension of probabilistic network reconstruction for
multi-omics reconstruction, in order to construct probabilistic
multilayer networks (263) that can be studied using the recent
tensorial formalism of multilayer networks (264).

4.6. Data Science in Biology—A Word of
Warning
An important aspect of any data science project is the crucial role
of both technical and domain specific expertise. The analysis of
biological networks in particular can pose some complication for
biological scientists not familiar with the field of network science;
a network visualization may be presented as result, without an
adequate evaluation of network topology or other structural and
dynamic parameters. Similar behaviors can be found with other
applications of data science tools.

A data-driven analysis without the participation of a domain
expert risks the pursuit of non-relevant questions. On the other
hand, even though a bioinformatics tool may be developed
with an increased usability in mind, the level of complexity
of both the computational method may require a deeper
understanding of the algorithm’s assumptions and limitations
in order to reach valid results. With this in mind, it is evident
that proper computational approaches to biological questions
require a fundamental understanding of both in order to reach
scientifically solid conclusions. In many cases, the key to achieve
this is to strive for multidisciplinary approaches.

5. CONCLUSION

Cancer is the paradigmatic complex phenotype. We have been
able to capture some of this complexity via experimental
measurements with the different high throughput biomolecular
technologies generically termed omics. Each single-technology
derived data type has its own set of caveats and complexities.
An additional challenge lies in the fact that each data type is
able to account for a fraction of the large set of cancer aspects
or features. Recent times have witnessed the development of
new ways to gather and analyze these partial information layers
together, under the name of multi-omics.

There are, however, multiple approaches to multi-omic
computational modeling and integration, some of the most
relevant have been described and discussed here. Our aim
has been that of presenting the current state of the art of
computational oncology tools for multiomic studies of complex
cancer phenotypes. Novel developments in the multiomic
computational analysis come from different fields, ranging
from purely mathematical developments (263, 264), to machine
learning and computational intelligence applications (179, 223),
to single-cell sequencing and imaging studies (139, 145) and
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more. However, in our view, the development of methods to
integrate all these different analytical approaches into intelligible
and statistically robust frameworks will provide the field with
unprecedented advances both in our understanding of cancer
biology and in our impact in the clinical settings. The field
is fast-growing and currently under development, with novel
algorithmic approaches being constantly released, but we believe
that the present account is a good starting point.
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Breast cancer is a disease that exhibits heterogeneity that goes from the genomic to

the clinical levels. This heterogeneity is thought to be captured (at least partially) by

the so-called breast cancer molecular subtypes. These molecular subtypes were initially

defined based on the unsupervised clustering of gene expression and its correlate with

histological, morphological, phenotypic and clinical features already known. Later, a

50-gene signature, PAM50, was defined in order to identify the biological subtype of

a given sample within the clinical setting. The PAM50 signature was obtained by the

use of unsupervised statistical methods, and therefore no limitation was set on the

biological relevance (or lack of) of the selected genes beyond its predictive capacity.

An open question that remains is what are the regulatory elements that drive the

various expression behaviors of this set of genes in the different molecular subtypes.

This question becomes more relevant as the measurement of more biological layers

of regulation becomes accessible. In this work, we analyzed the gene expression

regulation of the 50 genes in the PAM50 signature, in terms of (a) gene co-expression, (b)

transcription factors, (c) micro-RNAs, and (d) methylation. Using data from the Cancer

Genome Atlas (TCGA) for the Luminal A and B, Basal, and HER2-enriched molecular

subtypes as well as normal tumor adjacent tissue, we identified predictors for gene

expression through the use of an elastic net model. We compare and contrast the sets of

identified regulators for the gene signature in each molecular subtype, and systematically

compare them to current literature. We also identified a unique set of predictors for

the expression of genes in the PAM50 signature associated with each of the molecular

subtypes. Most selected predictors are exclusive for a PAM50 gene and predictors are

not shared across subtypes. There are only 13 coding transcripts and 2miRNAs selected

for the four subtypes. MiR-21 and miR-10b connect almost all the PAM50 genes in all

the subtypes and normal tissue, but do it in an exclusive manner, suggesting a cancer

switch from miR-10b coordination in normal tissue to miR-21. The PAM50 gene sets

of selected predictors that enrich for a function across subtypes, support that different

regulatory molecular mechanisms are taking place. With this study we aim to a wider

understanding of the regulatory mechanisms that differentiate the expression of the

PAM50 signature, which in turn could perhaps help understand the molecular basis of

the differences between the molecular subtypes.

Keywords: multi-omic approaches, breast cancer subtypes, PAM50, elastic net, data integration
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1. INTRODUCTION

Breast cancer is the most common cause of cancer death
among females (1). Breast tumors have been classified in
molecular subtypes with distinctive clinical characteristics and
a recognizable gene expression signature (2). Such signature
has been reduced to 50 genes that achieve the best separation
of subtypes, attaining the PAM50 classifier (3). However, the
physiological implications of the difference in gene expression,
if any, are not well-understood.

Given that gene expression is regulated by several
interconnected mechanisms (4–7), differences across subtypes
are expected for these mechanisms. Evidence of this was found
in the form of distinguishable patterns of DNA methylation,
mutation and miRNA expression that shape groups partially
equivalent to the molecular subtypes (8). These patterns imply a
link between the different omics and PAM50 gene expression, but
do not clarify which genomic, epigenetic or post transcriptional
changes drive the expression signature of such molecular
subtypes. To advance in the identification of such drivers of
molecular subtypes expression, we propose the use of a sparse
model of PAM50 gene expression.

Sparse models achieve the selection of the best predictors
of an independent variable by fitting penalized linear models.
The penalization of the regression coefficients aim is to shrink
them toward zero in such a way that predictors contributing
lowly to prediction i.e., poorly associated with the independent
variable, end up with null coefficient values and get filtered out
of the model (9). Ridge Regression, Least Absolute Shrinkage
and Selection Operator, and Elastic Network methods apply
different penalizations. The elastic network approach selects
groups of pairwise correlated variables instead of choosing a
single predictor from the group (10, 11), augmenting the space
of predictors of interest but also incrementing false positive
rates (12).

Sparse models have been proposed for multi-omic sample
classification (13, 14) and biomarker identification (15–17);
but their capacity to simplify multi-omics co-interpretation has
only been tested in the evaluation of the extent of different
omics effects over a phenotype (18, 19). Here, the predictor
selection capability of the elastic network approach is exploited
to identify the CpGs, coding transcripts, and miRNAs most
associated with the expression of the PAM50 genes in order to
outlinemolecular differences behind the gene expression patterns
characterizing breast cancer subtypes within a true multi-omic
framework. The hypothesis is that PAM50 gene expression
patterns are accompanied by distinctive regulatory elements,
reflecting the way gene expression is controlled in the different
breast cancer subtypes.

2. METHODS

2.1. Data Acquisition
Concurrent experimental samples of DNA methylation,
transcript and miRNA expression were downloaded from the
GDC (https://portal.gdc.cancer.gov/repository) at May 2019.
Only samples with Illumina Human Methylation 450, RNA-seq

and miRNA-seq measures were kept; filtering out samples
quantified with the Illumina Human Methylation 27 BeadChip,
which covers a smaller portion of the genome than the one we
wanted to target. Subtype classification was also downloaded
from the GDC trough TCGABiolinks R package (20).

After preprocessing them according to Aryee er al. (21),
Tarazona et al. (22), and Tam et al. (23), and biomaRt v95, values
of methylation for 384,575 probes and expression for 16,475
coding transcripts and 433 miRNA precursors were obtained for
45 unique samples of Her2, 395 LumA, 128 LumB, and 125 Basal
subtypes, plus 75 samples of non-tumor (normal adjacent) tissue.

2.2. Elastic Network Implementation
The three different data types were concatenated and normalized
to have mean = 0 and standard deviation = 1. Eighty percent
of the samples for each subtype were used for training,
leaving the rest for testing as in Liu et al. (13). Using the
R package glmnet (24), elastic network models were fitted
per subtype for each gene in the PAM50 classifier with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/enetGLMNET.R. The mixing parameter was held
fixed at 0.5 because such value has shown a good performance
(10), but shrinkage parameter (λ) was optimized between values
from 0.001 and 1,000 through repeated cross-validation.

Cross-validation was repeated 100 times with k = 3-folds for
the subtypes with <100 training samples (Her2+ subtype and
normal tissue) and k = 5 for the more represented subtypes
(Luminal A, Luminal B, and Basal). Chosen λ parameters were
used to predict testing data and root mean squared error (RMSE)
was calculated per model. Fitting was repeated with the same
specifications, for only 40 samples per subtype to verify the effect
of data set size.

2.3. Omics Comparison
For each PAM50 gene model, RMSE was calculated for the
testing data either with (1) the complete set of selected predictors,
(2) only with selected CpGs, (3) just with selected coding
transcripts, or (4) solely with selected miRNAs. Omic’s specific
RMSE were evaluated by zeroing all coefficients not associated
to the omic of interest in the already fitted models with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/RMSEperOmics.R, in an approach similar to the one
used by Setty et al. (25) to search for key regulators. Obtained
values shape RMSE distributions per omic which were compared
via Kolmorogov–Smirnov test. This was done both per subtype
per omic and mixing all the subtypes in a distribution per omic.
P-values obtained were corrected for multiple testing with the
FDR method.

2.4. Test vs. Reported Links Between
Predictors and PAM50 Genes
Enrichment for previously reported regulatory links between
PAM50 genes and CpGs, TFs, and miRNAs were tested by
simple Fisher’s Exact Test. Tests repeated by subtypes had
p-values adjusted by FDR. Regulatory targets were taken
from Illumina’s annotation in the case of CpGs and from
databases accessible through R packages in the case of TFs
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FIGURE 1 | Schematic depiction of this work. By analyzing multiomic data from the TCGA/Genome Data Commons collaboration for the different breast cancer

molecular subtypes and healthy adjacent breast tissue via a generalized elastic network modeling, we have been able to derive some insight on the way the PAM50

genes are regulated (as predicted by the model). Results may shine some new light on the way PAM50 genes are able to capture intrinsic features of these phenotypes.

and miRNAs, with the linked script https://github.com/CSB-IG/
PAM50multiomics/blob/master/validateInteractions.R. tftargets
https://github.com/slowkow/tftargets is the package used to

retrieve TF targets. It queries both predicted and validated
data from TRED(2007), ITFP(2008), ENCODE(2012), and
TRRUST(2015) databases at the date specified in parentheses
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next to each resource, plus the lists curated by Neph et al. (26) and
Marbach et al. (27).

The package used to retrieve miRNA targets is multiMiR
v2.2 (28), it queries DIANA-microT-CDS, ElMMo, MicroCosm,
miRanda, miRDB, PicTar, PITA, TargetScan, miRecords,
miRTarBase, and TarBase, also reporting both experimentally
validated and predicted results. Universe size for enrichment
tests were taken from these databases, constrained to regulators
measured in the input datasets. The hypothesis is that models
selected reported associations between a PAM50 gene and a
regulator measured in the input dataset more than expected.

2.5. Analysis of the Selected Predictors
Selected predictors and associated coefficient values were loaded
to Cytoscape to construct a network of PAM50 gene predictors
per subtype. PAM50 genes are taken as targets while predictors
are sources, this makes a directed network were out and
indegree are estimated. Predictors with the largest outdegree
were submitted to an analysis of differential expression and
their coefficient value distributions were compared to the
global miRNA distribution via Kolmorogov–Smirnov tests. The
differential analysis of miRNA expression was done per subtype
by limma’s package treat function in order to control for both
fold change and significance (29). A minimum fold change of 1.1
was used.

2.6. Gene Enrichment Analysis
Every set of predictors selected for a PAM50 gene was
submitted to functional enrichment analysis with the R
package HTSanalyzeR v2.13.1 (30) versus the GO-BP with
the linked script https://github.com/CSB-IG/PAM50multiomics/
blob/master/enrichment.R. Sets enriched across subtypes were
further tested via Fisher’s Exact Test with the alternative
hypothesis that selection in one subtype is exclusive with regards
to selection another subtype.

The code to perform all previous analyses (see Figure 1) can
be found at the following GitHub repository: https://github.com/
CSB-IG/PAM50multiomics

3. RESULTS

Elastic network models were fitted per gene, regressing
PAM50 gene expression to DNA methylation, miRNA and
coding transcript expression. Elastic networks model shrink
the regression coefficients toward 0, filtering predictors by its
strength of association with the variable of interest. This ability
for feature selection was exploited versus unfiltered omic data to
identify the CpGs, coding transcripts and miRNAs most related
to the PAM50 genes in cancer subtypes and normal tissue.

We fitted five models for each PAM50 gene, one per subtype
and one for the normal tissue, since differences are expected for
each of the 5 phenotypes. Descriptors of models per subtype and
omic are reported in Table 1.

The output of the model are lists of associations between
PAM50 genes and the selected predictors. Each selected predictor
has a coefficient of regression whose value reflects the extent of
association with the PAM50 gene. Coefficients are never zero,

TABLE 1 | Size of input and output of the models per subtype: Basal, Her2+,

Luminal A, Luminal B as well as normal (i.e. tumor-adjacent healthy tissue).

Basal Her2+ LumA LumB Normal

Samples 125 45 395 128 75

Selected CpGs 3,090 2,514 7,173 1,485 5,373

Known CpGs selected 9 0 21 12 0

Selected coding transcripts 1,525 591 3,115 888 2,340

Selected TFs 207 91 465 133 327

Selected TFs predicted by

another software

15 2 49 11 19

Selected TFs experimentally

observed

4 3 25 7 9

miRNAs 101 85 174 116 123

Selected miRNAs predicted

by another software

7 3 7 2 4

Selected miRNAs

experimentally observed

8 5 8 12 5

since this value means predictors can be filtered out of the
prediction; but can be both negative and positive indicating an
opposite effect over the predicted value. Lists of associations
shape networks like the one represented in Figure 2. Networks
for the other subtypes and the normal tissue can be found at
Figures S1–S4.

From observation of networks of selected predictors to
PAM50 genes, it is evident that CpGs are the most selected
predictors, followed by transcripts and with only a few miRNAs
selected. It can also be seen that most predictors are exclusive
of a PAM50 gene but all the PAM50 genes share predictors
whose pattern of expression or methylation links one gene to
another. This suggests the complete set of PAM50 expression
is coordinated, independently of the gene being of luminal
expression, basal, or any other signature.

3.1. Omics Contribute Differently to PAM50
Gene Expression Prediction in Normal
Tissue and Cancer
In order to test the reliability of the fitted models, we checked
the prediction error and the selection of previously reported
associations. Regulation through DNA methylation, miRNA, or
TF targeting is hence regarded as true positive and compared to
model’s results.

The proportion of selected predictors can not be explained
solely by the size of the omics taken as input (χ2, p-value <

2.2e-16, Figure 3), specifically, coding transcripts and miRNAs
are overrepresented in the models (Fisher’s Exact Test, p-value
< 2.2e-16). Concordantly, there are more true TF (Fisher’s
Exact Test, p-value ≤ 1.942846e-05) and miRNA (Fisher’s Exact
Test, p-value ≤ 7.573200e-11) relations than expected but
less CpGs (Fisher’s Exact Test, p-value ≤ 4.311267e-03). The
exception is LumB subtype which has as many true positive CpGs
as expected.

Given the difference between input and selected proportion
of omics, we hypothesized a discrepant prediction power of
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FIGURE 2 | Predictors selected per PAM50 gene for Basal subtype. (A) Topology of selected predictors and associated PAM50 genes. Brown circles are PAM50

genes. Transcripts are colored in dark green, miRNAs in blue, and CpGs in light green. Edges link each PAM50 gene with its selected predictors. The color of the line

indicates the sign of the coefficient value associated with the predictor; negative values are in brown and positive ones in green. Zoom of the gray area shows the

predictors selected for MYBL2. (B) Summary of the network. Barplot with the total representation of each omic plus heatmap of the count of predictors shared by

PAM50 genes.

FIGURE 3 | Omics differ on selection and RMSE. (A) The proportion of each omic is shown for input and selected sets. The different omics are represented by a

different color. (B) Distribution of testing RMSE per subtypes are displayed for single and multi-omics.

CpGs, coding transcripts, and miRNAs. To test this, we evaluated
models carrying the complete set of selected predictors or just the
predictors from each omic.

As RMSE is a standard measure to compare regression models
that measures how far is the model prediction from the observed
data in response variable units, then, the lower its value the better.

Frontiers in Oncology | www.frontiersin.org 5 May 2020 | Volume 10 | Article 84563

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ochoa et al. PAM50 Multiomic Regulation

Normally, the error decreases the more independent predictors
are included in the model, so we choose not to fit again with
the selected predictor per omic, but to test the exact same model
with the jointly fitted coefficient values, just zeroing predictor’s
coefficients from other than the omic of interest. This way, the
RMSE distribution of a model containing only predictors of
a given omic, represents how much of the total prediction is
contributed by the predictors from that omic.

As suggested by the difference with the input proportions,
DNA methylation is the less predictive omic for all the subtypes,
thought this difference is not always significant (CpGs vs. coding
transcripts ks. test p-value ≤ 0.03192 for LumB, Her2+, and
Basal and CpGs vs. miRNAs ks. test p-value≤ 0.02222 for Her2+
and Basal). This disagrees with the great prediction improvement
reported by Huang et al. (16) for methylation data, a fact that
could be driven by the much larger and heterogenous input
data used here, that we believe captures better the heterogeneity
of breast cancer subtypes. Meanwhile, coding transcript and
miRNAs contribute the same, with no significant difference
between their distributions for all the subtypes.

Remarkably, the error distribution obtained with the complete
set of predictors significantly outperforms CpGs and some
subtype miRNAs (ks.test p-value≤ 0.02222 for LumA and Basal)
but never outweighs coding transcripts. Single omics can not
beat multi-omics error due to the design of the test, thus the
outperforming of CpGs and miRNAs is unsurprising, what is
startling is the complete statistical agreement between multi-
omics prediction power and coding transcripts prediction power,
which supports gene expression as the current best biomarker
of molecular subtypes. We must note however that this may be
related to (1)more info on RNA and (2) PAM50was derived from
expression signatures.

Finally, there is no significant difference across subtypes
RMSE distributions for both single-omics and multi-omics, but
CpGs (ks.test p-value ≤ 0.01601952), miRNAs (ks.test p-value
≤ 0.002834981), and multi-omics (ks.test p-value ≤ 0.03919459)
distributions of normal tissue differ from the distribution of each
subtype, suggesting these omics represent a distinct amount of
PAM50 gene expression in normal tissue than in cancer, that is,
the association of DNAmethylation and miRNA expression with
PAM50 gene expression is altered in cancer.

3.2. The Association Strength Distributions
of Predictors Are Different for Each
Subtype
The difference between omics extends to coefficient values,
shown in Figure 4. Since coefficients represent the strength
of association between predictors and PAM50 expression (16),
coefficient values suggest that each omic has a specific association
with PAM50 gene expression. Coefficient value distributions are
significantly different between subtypes (ks.test p-value ≤ 2.82E-
02) and omics (ks.test p-value≤ 0.01535) with few exceptions for
coding transcripts andmiRNAs. Basal, Her2+, and LumB coding
transcripts coefficients are not significantly different. Neither are
miRNA coefficients of pairs LumA and normal tissue, LumB and
Basal subtype, and Basal and Her2.

According to these distributions, DNA methylation has a
strong but noisy association with PAM50 gene expression
while miRNA (Fisher test p-values ≤ 0.001403597) and coding
transcript (Fisher test p-values ≤ 1.086031e-29) association
tends to be positive (Figure S3) and more stable. The elevated
association between DNA methylation and PAM50 genes
expression explains why so many CpGs get selected in spite of
its low prediction power. A stronger association between DNA
methylation and gene expression than between gene and miRNA
expression had previously been found for ovarian cancer by Sohn
et al. (18) using a different penalization modeling.

3.3. miR-21 and miR-10b Are the Only
Relevant Predictors Selected Across
Subtypes
Next, we wanted to see how variable is actually the association
between one predictor and the predicted PAM50 gene, that is,
the specific coefficient values, not their distributions. For this,
we wanted to focus on the predictors selected for a PAM50
gene across subtypes, shown in Figure 5. However, as noted
before, models selected a great quantity of predictors exclusive
for each gene, 93.45% of the selected CpGs, 74.24% of the coding
transcript, and 81.37% the miRNAs are not shared between any
two genes. In consequence, there are no CpGs associated with any
gene for all the subtypes but there are 14 relations with coding
transcripts and 51 with miRNAs satisfying this.

The 13 coding transcripts selected across subtypes as
predictors of a specific PAM50 gene are trivial, since they
just portray physical linkage. ELP2 and SLC39A6 are coded
in opposite strands of the same locus while the rest of pairs
are contiguous. Most of the associations, 84.77%, connect a
PAM50 gene with a coding transcript in another chromosome,
but these are not repeatedly selected across subtypes. It is
worth mentioning that although all coefficients values are
positive, even close predictors, like YEATS4 and SLC35E3 carry
distinct coefficients.

Regarding miRNAs, there are only two miRNAs repeatedly
selected among subtypes,miR-10b andmiR-21. These are known
breast cancer markers targeting some PAM50 genes (31). Mir-
21 has been experimentally linked with BCL2, MYC, EGFR, and
ERBB2 expression (32–35) and predicted to target ESR1 and
FOXA1 (36, 37). On the other hand, miR-10b has been linked to
CDC6, EGFR, and SFRP1 (38, 39). There is no particular pattern
among validated associations or coefficients, other than miR-21
carrying mostly positive coefficient values and miR-10b selection
extending up to normal tissue (for the full set of validated
interactions please see Supplementary Table S1).

3.4. Micro-RNA miR-21 and miR-10b Are
Universal PAM50 Predictors in Cancer and
Health
Next we wanted to check the role of miR-21 and miR-10b per
subtype. With this in mind, we revisited the models derived
networks, that link PAM50 genes and predictors per subtype.

The networks show that genes overexpressed in each subtype
get larger models. About 30% of the luminal genes have models
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FIGURE 4 | Distribution of coefficient values per omic. The subtypes are represented by different colors. Plots at the (Left) column represent negative coefficients

whereas those at the (Right) column stand for positive coefficient values.

larger than average for LumA subtype, while almost 90% of
basal genes have the equivalent for Basal subtype. Her2+ subtype
and normal tissue have no clear pattern, but for LumB subtype,
half the luminal genes and 28% of the proliferative ones have
increased size models.

Predictors that bridge between PAM50 genes can proceed
from any omic, but CpGs are significantly underrepresented
(Fisher test p-values ≤ 1.81E-88). CpGs are at most, selected for
two subtypes as predictors of a specific PAM50 gene. There are
just 24 CpGs in this situation, of which 15 are shared between

Her2+ and another subtype or the normal tissue, including
nine CpGs associated with ERBB2 but placed in other loci than
chromosome 17.

Meanwhile, coding transcripts and miRNAs fulfill this role
more often (Fisher test p-values ≤ 5.84E-03) than solely input
proportions would explain. This is no surprise since both pertain
to the same level of molecular features, that of transcripts, as the
PAM50 gene expression signature; as such, coding transcript and
miRNA may be subject to the same biomolecular pressures. The
stunning observation is that one miRNA can link almost all of
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FIGURE 5 | miRNAs selected across the four cancer subtypes. miRNAs are represented by the color bar at the left. The highest positive coefficient value appears in

bright red, the lowest negative coefficient is in bright green. Near zero coefficients look black. The white cells in the column of normal tissue means the predictors was

not selected.

the PAM50 genes for all the cases (Figure 6). The outstanding
miRNAs are againmiR-21 andmiR-10b.

For normal tissue miR-10b was selected as predictor of all
PAM50 genes while miR-21 is linked to only four genes. On
the contrary, miR-21 is connected to most genes in the all the
breast cancer subtypes, whilemiR-10b is poorly linked. For LumA
subtype, shown in Figure 6B, both miR-10b and miR-10a are
highly connected, but still can not reach genes like FOXC1, which
is connected instead withmiR-21.

BothmiR-10a andmiR-10b are members of the miR-10 family
encoded within the Hox genes genomic clusters;miR-10a resides
upstream from HOXB4 and miR-10b upstream from HOXD4
(40). Due to their relatedness they will be referred asmiR-10a/b.

The hub-like behavior of these miRNAs agrees with previous

observations of our group of highly connected miRNAs per
subtype (41), which are important for network cohesion (42).

Although the coefficients networks maintain a large connected
component when removing miR-10a/b and miR-21, tens to

hundreds of predictors are needed to link all the PAM50 genes;
when only one of these miRNAs is required to achieve the same.

Given that eachmiRNA has the potential to target hundreds of
genes (43), miR-10a/b and miR-21 are not so exceptional in this
regard. However, as explained earlier, only a fraction of PAM50
genes have a regulatory relation with these miRNAs, suggesting
most of the detected associations are indirect. Indirectness is
consistent with the low values of the coefficients, which range
from −0.2938690 to 0.4333184, when miRNAs coefficient values
range within two orders of magnitude higher. Coefficient value
distributions of miR-10a/b and miR-21 are also significantly
different than the rest of miRNA coefficients (ks.test p-value
≤ 9.068e-05).

3.5. PAM50 Genes Enrich for Different
Functions per Subtype
The selection of predictors we have presented is based on
a statistical association with the pattern of expression of a
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FIGURE 6 | Predictors connecting most PAM50 genes transition from miR-10a/b in normal tissue to miR-21 in cancer subtypes. (A–E) PAM50 genes are at the sides,

colored according to their pattern of expression: green for basal expression, orange for Her2 enriched, blue for luminal expression, and pink for proliferation favorable.

Node size represents the number of predictors selected. Predictors are in the middle. Lines connect PAM50 genes to the associated predictors. Lines are in a gray

gradient to distinguish different predictors. (F) The bar chart represents the number of PAM50 genes connected to the miRNAs per subtype.

PAM50 gene. The covariation sustaining such an association may
respond to how a specific group of predictors is able to attain
some biological function. To test this, functional enrichment was
done with the set of selected predictors per gene per subtype,
versus Gene Ontology Biological Processes categories (GO-BP)
(Figure 7).

Only two PAM50 genes are enriched for some process in the
Basal subtype, FOXC1 (basal cluster) and ANLN(proliferative
cluster). Neither the ANLN enrichment for telomere protection
nor the FOXC1 linkage to transforming growth factor response
are within these genes immediate annotated processes. Though
FOXC1 is actually related with TGFβ since both are able to
regulate EMT (44).

In the case of Her2+, just ORC6 (proliferative cluster) is
enriched for the totally unexpected process of synapse assembly,
but, despite the significant p-value, we must notice that this is
based on only two genes.

LumA is the most enriched subtype. This is not surprising
since it has the largest number of selected coding transcripts,
which is the starting material for enrichment. The 20 enriched
genes are mostly linked to distinct cellular division aspects. The
exception are the three keratins, genes with basal expression,
which are connected through their normal processes, suggesting

selected predictors respond to the normal gene’s function. MYC
and UBE2T are linked to rather wide categories (45) while
MLPH associates with other than its normal processes. The
remaining 14 genes are connected through categories consistent
with their proliferative expression, which again alludes to a
selection that followed the normal function of the genes. This is
again consistent with the available evidence.

For LumB subtype,MELK and CCNB1 enrich for cell division
as would be normally expected; while MYBL2 is unintuitively
linked to negative regulation of epithelial cell proliferation, which
however, has been reported (46). Finally, the normal tissue shows
different cell division aspects coherent with the proliferative
expression of its enriched genes.

Altogether, few genes have predictors with significant
enrichment extended across subtypes. Eight genes enriched
in two subtypes, including CCNB1, MKI67, and UBE2C, that
connect with the same processes, the expected ones, for the two
subtypes. MELK also connects with its normal process for two
subtypes but in LumA and LumB subtypes plus normal tissue.
ANLN, CEP55, KRT17, MYBL2, and ORC6, enrich for different
processes across subtypes, that is, a fifth of the genes with any
kind of enrichment, but five of the nine genes enriched for more
than one subtype.
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FIGURE 7 | Functional enrichment of the predictors selected per PAM50 gene. Pink ellipses represent PAM50 genes while the gray ellipses represent biological

processes. Colored lines link genes with the processes they are significantly enriched to the corresponding subtype. Wider lines indicate a higher number of PAM50

gene predictors in the process.

To further test the functional enrichment per subtype, we
compared the sets of predictors selected per subtype for each one
of the 9 genes that enrich for several subtypes. Genes enriched for
cell division across subtypes,CCNB1,MKI67, andMELK connect
to the process via distinct sets of selected predictors. From the
beginning, these genes bear different predictors (Fisher’s Exact
Test H1: less, p-value ≤ 1.281e-09), with a small intersection
whose removal does not change the significant enrichment for
cell division. This reflects the robustness of the process, which is
so important that distinct subsets of the 603 genes annotated in
the category are enough to call it.

The other two genes enriched for the same process across
subtypes, UBE2C for mitotic cytokinesis and, MELK for
regulation of transcription involved in G1/S transition of mitotic

cell cycle, lost the functional enrichment when the predictors
selected in both LumA and normal tissue (the intersection) were
removed. This implies LumA mitotic cytokinesis and regulation
of transcription may be involved in G1/S transition of mitotic cell
cycle relying on the normal tissue mechanism.

The quantity of shared predictors between the sets selected for
CEP55, indicates that predictor selection in the LumA subtype
is exclusive for normal tissue selection (Fisher’s Exact Test H1:
less, p-value = 1.141e-10). This means that the differential
enrichment between LumA and normal tissue is sustained by
different predictors, suggesting CEP55 fulfills divergent roles in
these phenotypes. This matches differences observed between
cancer and normal tissue (47) but, to our knowledge, not reported
for LumA subtype.
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The same reasoning supports KRT17 and ORC6 divergent
roles across subtypes. It is odd that KRT17 is linked to
kinase signaling for normal tissue and not for a breast cancer
subtype, when this has been described for another cancer (48)
but this may be associated to tumor incidence over adjacent
tissue (49). For ANLN and MYBL2, selection exclusion between
subtypes is not significant, meaning that differential enrichment
of these genes could settle on the same predictors, suggesting
functional diversity.

4. DISCUSSION

Sparse penalized models have already proven useful to discover
molecular mechanisms, cluster samples, and predict outcomes
such as survival (50). Penalization permits the fitting of
models otherwise unattainable given the relatively small
sample sizes and huge number of variables measured by
the omics. Here, the elastic network approach was used
for integrated interpretation of different omics measuring
DNA methylation and expression of both coding transcripts
and miRNAs.

However, a large training set is always preferable, and not
all breast cancer subtypes have been extensively sampled, which
is reflected in the models. For Luminal A, the most frequent
and sampled subtype, the highest number of predictors were
selected by the models; while Her2+, with only 45 samples, got
the lowest number of selected predictors. To assure comparability
across subtypes we trained the models again, but now using
the same number of samples, 40 samples, for all the subtypes.
Patterns found with this subset persist in the analysis of the
whole set of data, supporting comparability (Figures S5–S8).
Nevertheless, the absence of predictors found for LumA in the
smaller subtype’s models due to a lack of representation can
not be ruled out. This could specifically affect the functional
enrichment of PAM50 neighborhoods of predictors and so, the
functional divergence between subtypes is not definitive but
should be experimentally tested.

Multi-omic modeling of PAM50 gene expression is no
better than the sole use of coding transcripts, supporting gene
expression as the best biomarker ofmolecular subtypes. However,
our point in using the sparse model was not to predict PAM50
but to identify the molecular differences associated with PAM50
signatures that may lead to functional differences.

At the global level, a reduced prediction power of DNA
methylation and miRNAs containing models was observed for
all subtypes vs. normal tissue, indicating that the influence of this
omics on PAM50 gene expression is reduced for cancer. Although
this may be born out of incomplete knowledge or incipient
technology, an alteration of these omics has been effectively
reported; specifically, a generalized hypomethylation has been
observed for breast and other cancers (51).

Different predictors were expected per cancer subtype, but
the exclusivity of predictors from all the omics was surprisingly
high. Only 13 coding transcripts and 2 miRNAs were selected
for the four subtypes. The lack of CpGs selected across subtypes
is consistent with the high strength of association it has with

PAM50 gene expression. If the pattern of expression is different
between subtypes, the highly associated CpGs should be different.

The ubiquitous selection of miR-10b and miR-21 across
subtypes suggests a central role for these miRNAs in
breast cancer, which is actually supported by the literature.
Proliferation, cell migration, and in vivo tumor growth of MCF7
and MDA-MB-231 cell lines implanted in nude mice is inhibited
through antagomiR-21 (52) demonstrating the relevance of this
miRNA, at least for luminal A and triple negative subtypes. In
turn, both sub and overexpression of miR-10 are oncogenic.
MiR-10b overexpression enhances cell migration and invasion
by targeting HOXD10; while subexpression of miR-10b-3p,
coded in the same miR-10b locus, participates in breast cancer
onset by upregulating the cell cycle regulators BUB1, PLK1, and
CCNA2 (53).

Coherent with the ubiquitous selection of miR-21 breast
cancer subtypes and its replacement by miR-10a/b in normal
tissue. MiR-21 is significantly overexpressed for all cancer
subtypes while miR-10b is underexpressed, as previous reports
say (31). Mir-10a is significantly underexpressed in Basal and
Her2+ subtypes and slightly overexpressed in luminal subtypes,
but this is not significant in LumB case. The proposal is
that when miR-10b coordinates PAM50 genes, normal tissue
expression is predicted; whenmiR-10b is sub expressed andmiR-
21 is overexpressed, this second miRNA gains miR-10b place,
coordinating cancer expression of the PAM50 genes. Since miR-
10b has a known role in metastasis (31), it would be interesting to
observe the dynamics of the networks throughout the evolution
of the disease.

Additionally, the small coefficients associated with these
miRNAs are consistent with indirect associations. Considering
all these pieces, the transition from hub miR-10a/b in normal
tissue to miR-21 in breast cancer through the luminal subtypes,
evokes a switch between twomaster regulators. Master regulators
are genes needed for the specification of a lineage by its capacity
to regulate downstream genes either directly or not, whose
missexpression can re-specify the fate of cells (54).

Nonetheless, sparse models can not select regulators naively,
they need to feed on known regulators (16, 25, 55). Then,
the regulatory capacity of selected predictor can not be stated,
leaving miR-10a/b and miR-21 just as universal predictors of
PAM50 genes.

Another limitation of the study is the absence of an estimator
of significance or accuracy intrinsic to the methodology (56).
Regressionmodels quality is described in terms of RMSE, without
an indication of how well the selected predictors describe PAM50
expression. A ROC curve is not feasible, since models would
have to be turned into the classification setting, and even this
is unreachable, because true negative regulators can not be
ascertained, as non regulators could simply be regulators yet
to discover.

Finally, it is important to mention that applying the same
shrinkage to inherently different molecular levels, like CpG
methylation and transcript expression, could shrink to zero
all the coefficients of subtler effect predictors (13). Thus, the
next implementation of sparse multiomic models on PAM50
expression should adopt multiple penalizations, which could
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even ameliorate the bias on subtype representation (57). Distinct
values for the mixing parameter should also be probed, as well as
data decomposition into latent variables (58).

Future Directions
Apart from exploration of alternative frameworks, the immediate
follow up should be the experimental assessment of the
observations described here. Specifically, silencing and
expression of miR-10a/b and miR-21 need to be tested for
each breast cancer subtype. Disection of interaction between the
miRNAs and the PAM50 genes is required too.

Then, more omics could be included in the models. Copy
number variation is the first candidate to be incorporated since
it is already available in the databases and has a proven effect
on Her2+ subtype, in particular regarding the effect of the Her2
amplicon since it has been associated to regulation of growth and
survival processes. But single nucleotide variation and chromatin
accessibility are also available for some samples.

Other phenotypes with discriminant patterns of expression
could benefit from sparse modeling. There could be significant
predictors linked to the glioblastoma subtypes as was observed
for breast cancer. Predictors represent potential regulators of
the mechanisms behind subtype heterogeneity and, as such, are
interesting markers of cancer. In this sense, predictor selection
across stages, not subtypes, could illuminate the driving forces
behind disease development. Alternative methods like A–JIVE
(59) and sPLS (60) would have also exciting outcomes in
this settings.

A relevant mid to long term future direction will be the
implementation of experimental assays to test for multi-omic
synergistic or cooperative phenomena, aiming at providing some
mechanistic clues of the biological functions behind. There is
however a strong challenge on this given the combinatorial
mixture of effects that may be complex to disentangle. Some
promissory (yet preliminary) advances are starting to arise.

5. CONCLUSION

Holistic studies of cancer are needed to dissect its complexity.
Initiatives like The Cancer Genome Atlas have delivered the
distinct molecular perspectives that need to be interpreted
as a whole. The elastic net models subject of this work,
approach such an integration in a rather simplistic linear
form. Yet, the methodology is powerful enough to prove the
intuition that PAM50 gene expression patterns are accompanied
by distinctive potentially regulatory elements. Predictors are
selected in an almost exclusive manner, heavily dictated by
the omic of origin, with CpGs strongly associated to PAM50
expression not selected across subtypes. The way miR-10a/b and
miR-21, the only relevant predictors selected for all subtypes,

are connected and differentially expressed, suggest an specific
regulatory difference between breast cancer and normal tissue
that merits further research.
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Simultaneous identification of multiple single genes and multi-gene prognostic signatures

with higher efficacy in liver cancer has rarely been reported. Here, 1,173 genes potentially

related to the liver cancer prognosis were mined with Coremine, and the gene expression

and survival data in 370 samples for overall survival (OS) and 319 samples for disease-free

survival (DFS) were retrieved from The Cancer Genome Atlas. Numerous survival analyses

results revealed that 39 genes and 28 genes significantly associated with DFS and OS in

liver cancer, including 18 and 12 novel genes that have not been systematically reported

in relation to the liver cancer prognosis, respectively. Next, totally 9,139 three-gene

combinations (including 816 constructed by 18 novel genes) for predicting DFS and

3,276 three-gene combinations (including 220 constructed by 12 novel genes) for

predicting OS were constructed based on the above genes, and the top 15 of these four

parts three-gene combinations were selected and shown. Moreover, a huge difference

between high and low expression group of these three-gene combination was detected,

with median survival difference of DFS up to 65.01 months, and of OS up to 83.57

months. The high or low expression group of these three-gene combinations can predict

the longest prognosis of DFS and OS is 71.91 months and 102.66 months, and the

shortest is 6.24 months and 13.96 months. Quantitative real-time polymerase chain

reaction and immunohistochemistry reconfirmed that three genes F2, GOT2, and TRPV1

contained in one of the above combinations, are significantly dysregulated in liver cancer

tissues, low expression of F2,GOT2, and TRPV1 is associated with poor prognosis in liver

cancer. Overall, we discovered a few novel single genes and multi-gene combinations

biomarkers that are closely related to the long-term prognosis of liver cancer, and they

can be potential therapeutic targets for liver cancer.

Keywords: liver cancer, gene combinations, data mining, disease-free survival (DFS), overall survival (OS)
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INTRODUCTION

Liver cancer is the sixth most common cancer and the
fourth leading cause of cancer-related deaths (1). Specifically,
hepatocellular carcinoma (HCC) accounts for more than 90%
of liver cancer cases from a histopathological perspective.
According to the GLOBOCAN 2018 database, there are about
841,000 new HCC cases and 782,000 related deaths worldwide
each year, with China accounting for nearly half of the total
number of global HCC cases and deaths (2, 3). In China, the
Guangxi province has higher morbidity and mortality rates than
the national average (4). The high mortality and poor prognosis
of HCC poses a global challenge. Despite the slight increase in the
5-year survival rate of liver cancer in China from 10.1 to 12.1%
over the periods of 2003–2015, it still remains at a low level (5). A
survival analysis of 2, 887 liver cancer patients in 14 years showed
that the 1-year, 3-year, and 5-year survival rates were 49.3, 26.6,
and 19.5%, respectively (6).

Although there aremany existing therapies for HCC including
surgical resection, transplantation, ablation, and transcatheter
chemoembolization, etc., the long-term survival of HCC patients
remains poor due to their limited indications and different
effects on prognosis (7–10). A 20-year prospective cohort analysis
reported that the 5-year survival rates of TNM stage I, II, IIIA,
and IVA patients after hepatectomy were 81.7, 77.2, 44, and
28.2%, respectively (11). Therefore, it is of crucial importance
to explore new prognostic biomarkers and investigate treatment
strategies to improve the overall prognosis of HCC patients.

Currently, the research on prognostic molecular markers
of HCC is still ongoing, and many single-gene or multi-
gene combination molecular markers related to HCC invasion,
metastasis and prognosis are being gradually discovered. For
example, the expression of HMGA1 in HCC is associated with
poor prognosis and is found to promote tumor growth and
migration in vitro (12). The overexpression of SYPL1 is associated
with epithelial-mesenchymal transition (EMT) of HCC cells
and can predict the prognosis of HCC (13). RBM8A and
SIRT5 promote the migration and invasion of HCC cells by
activating the EMT signaling pathway and targeting E2F1 (14,
15), respectively (16, 17). The EpCAM (18), a liver X receptor
(LXR) (19), SPAG5 (20), and KOR (21) have been shown to be
strongly correlated with HCC metastasis, invasion, or prognosis.
Arginase-1, FTCD, and MOC-31 have a good performance in
the diagnosis of HCC (22). TMEM88, CCL14, and CLEC3B can
serve as potential prognostic markers of HCC (23). At the same
time, some multi-gene combined prognostic studies on HCC
have also been reported. For example, three genes (UPB1, SOCS2,
RTN3) combination markers (24) and four genes (CENPA, SPP1,
MAGEB6, HOXD9) combination models can predict the overall
survival in patients with HCC prognosis (25).

However, due to the sample size limitation and the
heterogeneity of the samples in different studies, the efficiency
of the identified prognostic markers for liver cancer still has
ample space to improve. In addition, because of the myriad of
gene interaction capabilities and the possibility of synergistic
promotion of disease progression, it is of great significance to find
some multi-gene combinations that may have better prognostic

efficacy than single genes for prognostic targets of liver cancer.
Therefore, the leverage of the large sample sizes of the public data
platforms, integrating new and effective mining and screening
methods, as well as reliable experimental verification is a very
promising direction for the discovery of multiple effective
single genes and multi-gene combination prognostic markers of
liver cancer.

High-throughput profiling technologies and bioinformatics
methods are now being applied to all fields of biomedical
research. A mass of cancer data, such as the mRNA expression,
copy number variation, single nucleotide polymorphism (SNP),
and microRNA expression generated by those tools are collected
in public archives such as The Cancer Genome Atlas (TCGA)
(http://cancergenome.nih.gov/), Coremine (http://www.
coremine.com/medical/), Oncomine (https://www.oncomine.
org/resource/login.html), Gene Expression Omnibus database
(GEO, https://www.ncbi.nlm.nih.gov/geo/), etc. Making full
use of the public data from these databases is meaningful for
exploring and discovering effective HCC prognostic biomarkers.
For instance, Li et al. (24) developed a three-gene prognostic
signature composing of three genes UPB1, SOCS2, and RTN3,
which was revealed to have prognostic value for HCC patients
based on TCGA data. Our previous study used data retrieved
from the Coremine, TCGA, and GEO database and discovered
that high-expressed E2F transcription factor 3 is associated with
poor prognosis of HCC (26).

In this study, we used text mining approach to find the
medial related candidate gene list for liver cancer prognosis,
and a total of 1,173 genes that might be related to the
prognosis of liver cancer were finally obtained. The association
of the 1,173 genes with overall survival (OS) and disease-
free survival (DFS) was accessed in a large sample of TCGA
cohort, in which the subgroups of 319 patients with DFS
and 370 with OS were available. The survival analyses are
carried out for each of these genes to identify single prognostic
markers. Moreover, we performed survival analyses of the gene
combinations and performed multiple screening for these HCC
prognostic molecular markers, revealing the association between
the expression of numerous genes or gene combinations and the
survival in HCC patients. We then compared the ability of single
genes and multiple gene combinations to predict the prognosis
of HCC. Moreover, a huge difference between high and low
expression group of these three-gene combinations was detected,
with median survival difference of DFS up to 65.01 months,
and of OS up to 83.57 months. The high or low expression
group of these three-gene combinations can predict the longest
prognosis of DFS and OS is 71.91 months and 102.66 months,
and the shortest is 6.24 months and 13.96 months. Among the
above genes that may be strongly correlated with the prognosis
of HCC identified in large sample data, it was found that the
combination of the three genes F2, GOT2, and TRPV1 that have
not been systematically reported has a strong ability to predict
the prognosis of HCC.We further verified F2,GOT2, and TRPV1
by three independent expression profile microarray data for liver
cancer acquired from the Oncomine database, and conducted the
quantitative real-time polymerase chain reaction (qRT-PCR) in
20 pairs of HCC and adjacent tissues, and immunohistochemistry
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(IHC) staining in 90 pairs of HCC and its precancerous tissues.
These results validated that the low expression of F2, GOT2, and
TRPV1 in liver cancer was associated with the poor prognosis of
liver cancer.

MATERIALS AND METHODS

Data Sources
We combined 3 corresponding concepts of the key word
“liver cancer” with 2 concepts of the key word “prognosis”
and 10 concepts of the key word “outcome,” respectively,
(Supplementary Table S1), and searched for their corresponding
genes or proteins in the Coremine database (http://www.
coremine.com/medical/). After deleting duplicates, we selected
1,173 gene entries with p-values < 0.05 that might be
associated with the prognosis of liver cancer for further analyses
(Supplementary Table S2).

The above genes mined in the Coremine database include
some genes obtained from other gene-mining reports; however,
the number of samples and data standards in each report is
different. Therefore, we selected the cohort of The Cancer
Genome Atlas (TCGA) (http://cancergenome.nih.gov/), a
database with consistent sample size and data standards, to
conduct unified batch verification of these genes and conduct
three-gene combinations survival analyses.

We studied the relationship between each of the selected
1,173 genes and the prognosis of liver cancer patients in
TCGA cohort which downloaded from cBioPortal for Cancer
Genomics (https://www.cbioportal.org/) in September 2018 (27,
28), and a subgroup of 319 liver cancer samples with HCC
DFS corresponding follow-up data and a subgroup of 370 liver
cancer samples with HCC OS corresponding follow-up data
were chosen.

Survival Analysis and Gene Selection
Kaplan-Meier estimation of survival functions and Log-rank tests
were used to evaluate effect of genes on DFS and OS. The
Cox proportional hazard model was performed for multivariate
analyses of HCC prognosis. Survival analyses were performed
using the R survival package in R (version 3.3.1). The Kaplan-
Meier survival curves and Cox proportional hazards regression
model for DFS and OS were generated by IBM SPSS (version
23.0). The median expression level of a gene was used as a
cutoff value for the classification of patients into high and low
expression groups (29).

Human Tissue Samples
For the validation studies, we used 20 patients who underwent
primary and curative hepatectomy from Apr 2016 to Apr 2018
at the First Affiliated Hospital of Guangxi Medical University.
Those patients who have distinctive pathologic diagnosis of
HCC without preoperative anticancer treatment were eligible
for inclusion in this study. The paraffin-embedded pathologic
specimens were collected during surgery and stored in a liquid
nitrogen tank until the step of mRNA isolation. All patients
received an explanation for the purpose of the study and
signed informed consent. The Ethics Committee of Guangxi

Medical University granted approval for this study. For IHC,
a commercial biological tissue microarray containing 90 pairs
of HCC and adjacent normal liver tissues was constructed
by the Biological sample library of Shanghai Outdo Biotech
Company, and the survival information of each case was usable.
(Microarray: HLivH180Su14).

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
QRT-PCR was performed to evaluate the mRNA expression of
selected genes in 20HCC and theirmatched precancerous tissues.
Total RNA was isolated using Trizol reagent (Life Technologies,
Inc., NY, USA) according to the manufacturer’s instructions. The
concentration and purity of the total RNA were detected using
Microplate reader (Bioteck Instruments, Inc., VT, USA). RNA
reverse transcription was then performed with the PrimeScriptTM

RT reagent Kit (Takara Biomedical Technology (Beijing) Co.,
Ltd.) with gDNA Eraser (Perfect Real Time), and qRT-PCR was
performed using the TB GreenTM Premix Ex TaqTM II (Tli
RNaseH Plus) kit (Takara Biomedical Technology (Beijing) Co.,
Ltd.) protocol in a StepOnePlus system (Applied Biosystems. Life
Technologies Holdings Pte Ltd, Singapore).

The sequences of the primers are as follows: F2: forward
primer, 5′-CTGAGGGTCTGGGTACGAACT-3′, reverse
primer, 5′-TGGGTAGCGACTCCTCCATAG-3′; GOT2: forward
primer, 5′-AAGAGTGGCCGGTTTGTCAC-3′, reverse primer,
5′-AGAAAGACATCTCGGCTGAACT-3′; TRPV1: forward
primer, 5′-TGCACGACGGACAGAACAC-3′, reverse primer,
5′-GCGTTGACAAGCTCCTTCAG-3′. The cycle conditions are
as follows: after an initial incubation at 95◦C for 30 s, the samples
were cycled 40 times at 95◦C for 5 s and 60◦C for 30 s. The
relative expression level of each gene in the individual samples
was calculated using the 2−11Ct method and normalized using
GAPDH as an endogenous control.

Immunohistochemistry (IHC)
EnVisionTM FLEX+, Mouse, High pH, (Link) (K8002, Dako)
was used for the immunohistochemistry. After the tissue chips
were baked and placed in LEICAST5010 (LEICA), PT Link
(Dako North America, Inc.) was used for antigen retrieval.
Primary antibodies were diluted (F2, 1:3000; GOT2, 1:80000;
TRPV1, 1:1500) and incubated overnight at 4◦C. The secondary
antibody reactions were carried out using the Autostainer Link
48 (Dako North America, Inc.), the sections were subjected to
color development with the DAB chromogenic kit, and finally
counterstained with Hematoxylin (SLBT4555, Sigma Aldrich).
The following antibodies were used: F2, 1: Anti-Thrombin
(ab83981; Abcam), GOT2, 1: Anti-FABP-1 (ab171739; Abcam),
TRPV1, 1: Anti-VR1 (ab3487; Abcam). All slides were evaluated
by two independent pathologists who were blind about the
clinicopathologic data.

The expression levels were scored as the staining intensity (0,
negative; 1+, weak; 2+, moderate; 3+, strong) multiplied by the
proportion of immunopositive staining area (0, < 25%; 1+, 25–
50%; 2+, 50–75%; 3+, >75%) intensity of staining. Expression
scores <5 were considered as “low expression,” and scores ≥5
were considered as “high expression.”
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Statistics
Statistical analyses were conducted using R 3.3.1 (Auckland, NZ)
and IBM SPSS 23.0 (Chicago, USA). McNemar test was used
to test the paired 4-fold table experimental data of IHC. The
paired t-test was used to analyze the qRT-PCR experimental data.
Except for single-gene survival analyses and three-gene prognosis
survival analyses with p-value < 0.01 as statistically significant,
other statistical analyses were considered statistically significant
with two-sided p-value < 0.05.

RESULTS

Selection of Genes Related to Liver Cancer
Prognosis and Liver Cancer Samples
We combined 3 corresponding concepts of the key word
“liver cancer” [Liver neoplasms (alias Liver Cancer) (disease)
(60,666 connections); Liver carcinoma (alias liver cell cancer)
(disease) (55,739 connections); Carcinoma, Hepatocellular
(alias Adult Liver Cancer) (mesh) (57,034 connections)] with 2
corresponding concepts of the key word “prognosis” [Prognosis
(mesh) (77,312 connections); Prognostic Marker (alias Prognosis
Marker) (chemical) (22,056 connections)] and 10 corresponding
concepts of the key word “outcome” [Fatal Outcome (mesh)
(34,016 connections); Outcome Assessment (Health Care)
(alias Outcome Study) (mesh) (48,296 connections); Outcome
studies (procedure) (9,545 connections); Treatment Outcome
(mesh) (77,246 connections); Outcomes research (procedure)
(5,540 connections); Outcome monitoring (procedure) (2,030
connections); Patient-focused outcomes (procedure) (3,830
connections); Treatment outcome in HSR (procedure) (998
connections); Patient Reported Outcome Measures (alias
Patient Reported Outcome) (mesh) (2,301 connections);
Patient Outcome Assessment (mesh) (9,066 connections)],
respectively, (Supplementary Table S1), and searched for their
corresponding genes or proteins in the Coremine database
(http://www.coremine.com/medical/). With p-values < 0.05 as
the criteria, a total of 1,173 genes that might be related to the
prognosis of liver cancer were finally obtained after screening
and elimination of duplicates. As the samples of liver cancer in
the Coremine database were not uniform enough, we selected
319 samples for DFS and 370 samples for OS of liver cancer from
the TCGA database and obtained the corresponding survival
data as well as the expression information of the above 1,173
genes in these samples. This was necessary to carry out the
subsequent survival analyses of these genes for liver cancer.

The Single Genes Prognostic Analyses
To clearly describe our process of screening genes, a flowchart
of the analysis procedure was developed (Figure 1). First, we
performed the Kaplan-Meier analysis of each of the 1,173 genes.
It was found that the mRNA expression of 276 genes and 283
genes was significantly associated with DFS in 319 patients
(p < 0.05) and OS in 370 patients (p < 0.05), respectively.
Additionally, the mRNA expression of 166 of these genes was
significantly associated with both DFS and OS (p < 0.05).

To further investigate the value of the genes in the prognosis
of liver cancer, we chose 135 genes and 149 genes with p-values

< 0.01 for DFS and OS, respectively. Next, we used the Cox
proportional hazards regression model to employ multivariate
analyses on the above genes, respectively to determine the DFS
and OS prediction potential of these genes.

The DFS-related multivariate analysis results showed that the
expression of 39 genes (ALDOB, APOB, AURKB, C5, CCNF, CD4,
CENPJ, CETP, COL18A1, CPT2, DAND5, DNASE1, EBPL, F7,
FLT3, G6PD, GNMT, ITGB2, KLRK1, KNG1, LMOD1, NEK2,
PCLAF, PER1, PKM, POU2F1, PPAT, PPIA, PRF1, PTPN6,
RUNX3, SELP, SLCO1B1, SPPL2A, STAT5A, TCF21, TRPV1,
TUSC1, and TYMS) was significantly associated with DFS in
HCC patients (p < 0.05, Table 1). The highly significant results
of both the DFS-related single-gene survival analyses for each of
these 39 genes andmultivariate analysis confirmed that the above
39 genes have a strong association with the DFS of liver cancer,
especially the 5-year disease free survival rate of liver cancer.

The OS-related multivariate analysis results showed that the
expression of 28 genes (ABCC1, ANXA7, APOB, ATG7, BAK1,
CA9, CCNA2, CHD1L, CYP3A4, E2F1, EZH2, F2, G6PC, GMPS,
GOT2, HDAC2, HPX, KPNA2, LAPTM4B, MAGEB3, MAPT,
MPV17, NTF3, PPAT, SLC2A1, SLC38A1, SPP1, and TRPV1)
was significantly associated with OS in HCC patients. (p < 0.05,
Table 1). The strongly significant results of both the OS-related
single-gene survival analyses and multivariate analysis confirmed
that these 28 genes are significantly associated with the OS of liver
cancer, especially the 5-year survival rate of liver cancer.

Additionally, among the above-mentioned genes selected after
single-gene survival analyses and multivariate analyses, 3 genes
(APOB, PPAT, and TRPV1) were significantly associated with
both DFS and OS in HCC patients.

Heat maps of the expression of the above 39 DFS-related genes
and 28 OS-related genes in 1173 TCGA liver cancer samples,
respectively, which grouped by prognosis status, were shown in
Supplementary Figure S1.

Three-Gene-Combination Prognostic
Model
To reflect the association of the expression of the combined
genes with the prognosis of HCC, three-gene-combinations of
the above 39 and 28 single genes that are significantly associated
with DFS and OS, respectively, were formed, resulting in 9,139
and 3,276 three-gene-combinations for DFS andOS, respectively.
In each combination, simultaneous high expression of the three
genes in the same case was defined as the co-high expression
group. Similarly, simultaneous low expression of the three genes
in the same case was considered to be the co-low expression
group. In order to ensure the comparability between the high and
the low expression group, we deleted combinations which had <

25 cases in the co-high or co-low expression group.

Three-Gene-Combination of Prediction for DFS in

Liver Cancer
K-M survival analysis of each of the above 9,139 combinations
constituted by 39 DFS-related single genes was first performed.
Then, we selected a total of 2,758 combinations with p-values <

0.01, excluding the combinations with no more than 25 cases in
the co-high expression or co-low expression groups. Apparently,
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FIGURE 1 | Flow Chart. #The associations of the genes with liver cancer prognosis that were not previously reported. *By text mining of searching for key words

related to the markers of liver cancer prognosis and screening, a total of 1,173 genes containing both previously reported and unreported associations with liver

cancer prognosis were obtained. **In each sample, the simultaneous high expression of all three genes was considered as high expression group in new combination.

Similarly, the simultaneous low expression of all three genes was considered as low expression group in new combination. ***By comparing the prognostic value of

individual genes and their combinations, we selected genes of combination F2- GOT2-TRPV1 for subsequent verification.

these selected 2,758 combinations have significant prognostic
implications for DFS in liver cancer.

In addition, 18 of the above 39 single genes have not yet been
systematically reported to be associated with HCC prognosis, and
these 18 genes can combine into 816 three-gene-combinations.
The results of the K-M survival analyses showed that 317
combinations had significant association with DFS of liver cancer
(p < 0.01).

The top 15 combinations of the above 2,758 and 317
combinations with the smallest p-values were chosen. The
DFS-related survival analyses diagrams and tables of these
combinations and the single genes they contain are as follows
(Figures 2, 3; Tables 2, 3).

Three-Gene-Combination of Prediction for OS in

Liver Cancer
Similarly, three-gene-combinations of the 28 single genes
significantly associated with OS confirmed by the single gene
survival analyses and the multivariate analysis were formed,
resulting in 3,276 three-gene-combinations. 930 of these 3,276

combinations were screened out on the conditions that the
number of cases in both the co-high and co-low expression
groups was > 25, and the p-values were < 0.01 according to the
OS-related K-M analyses results.

Furthermore, 12 of the above 28 single genes that were
noted to have an unknown association with liver cancer
prognosis formed 220 three-gene-combinations. Out of the 220
combinations, there were 31 combinations in which the number
of cases in both the co-high and co-low expression groups was >

25 and the OS-related survival analyses results showed p < 0.01.
We found 930 of above 3,276 combinations and 31 of above

220 unreported-gene combinations were significant association
with OS related survival of liver cancer patients. Among
the 930 combinations and 31 combinations mentioned above,
the diagrams and tables of the OS-related survival analyses
of the top 15 combinations with the smallest p-values and
the single genes they contain are as follows (Figures 4, 5;
Tables 3, 4) Among the 12 genes that have an unknown
association with HCC prognosis, F2, GOT2, TRPV1, and their
combination F2-GOT2-TRPV1 were all significantly associated
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TABLE 1 | Multivariate analyses of prognosis of DFS of 319 HCC patients and OS of 370 HCC patients in a TCGA cohort.

Items Genes B SE Wald Sig. Exp (B) 95.0% CI

Lower Upper

DFS associated ALDOB −0.580 0.186 9.750 0.002 0.560 0.389 0.806

APOB −0.436 0.217 4.023 0.045 0.647 0.423 0.990

AURKB 0.527 0.211 6.208 0.013 1.694 1.119 2.564

C5* −0.420 0.170 6.093 0.014 0.657 0.471 0.917

CCNF 0.694 0.334 4.310 0.038 2.002 1.040 3.857

CD4* −0.774 0.316 6.007 0.014 0.461 0.248 0.856

CENPJ 1.053 0.243 18.794 0.000 2.867 1.781 4.615

CETP* 0.829 0.423 3.851 0.050 2.291 1.001 5.245

COL18A1* 0.417 0.207 4.064 0.044 1.518 1.012 2.278

CPT2 0.558 0.247 5.114 0.024 1.747 1.077 2.834

DAND5* −0.427 0.183 5.466 0.019 0.652 0.456 0.933

DNASE1* 0.382 0.136 7.927 0.005 1.465 1.123 1.910

EBPL* −0.766 0.280 7.463 0.006 0.465 0.268 0.805

F7* −0.496 0.175 8.034 0.005 0.609 0.432 0.858

FLT3* −0.700 0.240 8.512 0.004 0.497 0.310 0.795

G6PD 0.477 0.188 6.438 0.011 1.611 1.115 2.328

GNMT 0.427 0.160 7.118 0.008 1.533 1.120 2.097

ITGB2* 1.112 0.301 13.662 0.000 3.042 1.686 5.486

KLRK1 0.932 0.384 5.883 0.015 2.539 1.196 5.390

KNG1* 0.645 0.277 5.412 0.020 1.906 1.107 3.282

LMOD1* −0.873 0.410 4.524 0.033 0.418 0.187 0.934

NEK2 −0.546 0.263 4.299 0.038 0.579 0.346 0.971

PCLAF 0.526 0.243 4.700 0.030 1.693 1.052 2.724

PER1 −0.670 0.221 9.169 0.002 0.512 0.332 0.790

PKM −0.645 0.282 5.210 0.022 0.525 0.302 0.913

POU2F1 0.455 0.142 10.236 0.001 1.577 1.193 2.084

PPAT* 0.966 0.210 21.121 0.000 2.628 1.741 3.969

PPIA* 0.626 0.183 11.661 0.001 1.870 1.306 2.679

PRF1* −1.676 0.370 20.505 0.000 0.187 0.091 0.386

PTPN6 −0.610 0.227 7.203 0.007 0.543 0.348 0.848

RUNX3 0.967 0.375 6.659 0.010 2.629 1.262 5.479

SELP* 0.790 0.270 8.587 0.003 2.203 1.299 3.736

SLCO1B1 −0.524 0.213 6.029 0.014 0.592 0.390 0.900

SPPL2A* −0.669 0.217 9.528 0.002 0.512 0.335 0.783

STAT5A −1.704 0.489 12.149 0.000 0.182 0.070 0.474

TCF21 −0.979 0.401 5.961 0.015 0.376 0.171 0.824

TRPV1* −0.520 0.189 7.604 0.006 0.595 0.411 0.860

TUSC1 0.423 0.188 5.044 0.025 1.526 1.055 2.207

TYMS 0.523 0.245 4.558 0.033 1.687 1.044 2.727

OS associated ABCC1 1.097 0.369 8.841 0.003 2.994 1.453 6.168

ANXA7* −0.554 0.201 7.618 0.006 0.575 0.388 0.852

APOB −0.791 0.311 6.461 0.011 0.453 0.246 0.834

ATG7 0.613 0.312 3.876 0.049 1.847 1.003 3.400

BAK1 −0.490 0.231 4.497 0.034 0.613 0.390 0.964

CA9 0.761 0.363 4.399 0.036 2.140 1.051 4.356

CCNA2 0.502 0.203 6.094 0.014 1.652 1.109 2.461

CHD1L 0.491 0.181 7.377 0.007 1.634 1.147 2.330

CYP3A4 0.999 0.364 7.539 0.006 2.717 1.331 5.544

E2F1 0.360 0.172 4.371 0.037 1.433 1.023 2.008

(Continued)
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TABLE 1 | Continued

Items Genes B SE Wald Sig. Exp (B) 95.0% CI

Lower Upper

EZH2 0.985 0.399 6.103 0.013 2.678 1.226 5.852

F2* 0.711 0.313 5.174 0.023 2.036 1.103 3.757

G6PC −0.677 0.341 3.937 0.047 0.508 0.260 0.992

GMPS 0.733 0.291 6.345 0.012 2.081 1.177 3.681

GOT2* −1.509 0.484 9.723 0.002 0.221 0.086 0.571

HDAC2 0.813 0.316 6.628 0.010 2.255 1.214 4.187

HPX* 0.930 0.384 5.882 0.015 2.535 1.195 5.378

KPNA2 0.835 0.284 8.664 0.003 2.305 1.322 4.018

LAPTM4B −0.492 0.168 8.616 0.003 0.611 0.440 0.849

MAGEB3* 0.393 0.179 4.824 0.028 1.482 1.043 2.105

MAPT* 0.660 0.243 7.349 0.007 1.934 1.201 3.117

MPV17* 1.141 0.488 5.468 0.019 3.129 1.203 8.141

NTF3* 1.089 0.357 9.318 0.002 2.973 1.477 5.983

PPAT* 0.752 0.286 6.897 0.009 2.122 1.210 3.719

SLC2A1* −0.921 0.440 4.383 0.036 0.398 0.168 0.943

SLC38A1* −0.768 0.289 7.063 0.008 0.464 0.263 0.817

SPP1 0.604 0.264 5.219 0.022 1.830 1.090 3.073

TRPV1* 0.453 0.201 5.044 0.025 1.572 1.059 2.334

*The gene has not been systematically reported to be associated with HCC prognosis.

Cox proportional hazard model was used to analyze the impact of 135 genes on DFS and the impact of 149 genes on OS, respectively, P < 0.05 were considered to be significant.

39 genes and 28 genes were significantly associated with liver cancer DFS and OS, respectively.

with OS in 370 liver cancer samples from the TCGA data
(F2: p = 0.005; GOT2: p < 0.001; TRPV1: p = 0.002; F2-
GOT2-TRPV1: p < 0.001). The overall survival rate in HCC
patients with low expression of F2, GOT2, TRPV1, and the
three-gene-combination F2-GOT2-TRPV1 were all significantly
lower than that in liver cancer patients with high expression.
In addition, the median survival time difference between the
high expression group and the low expression group of F2,
GOT2, TRPV1, and the three-gene combination F2-GOT2-
TRPV1 was 23.62, 32.26, 35.61, and 55.68 months, respectively.
The median survival time difference of this combination was
greater than that of a single gene, which was one of the main
reasons why we selected these three genes for qRT-PCR and
immunohistochemically validation.

Low Expression of F2, GOT2, and TRPV1

Predicts Poor Prognosis
Based on the above results of the OS-related survival analyses and
multivariate analyses on 28 genes, as well as the results of survival
analyses on their three-gene-combinations, we selected three
genes F2, GOT2, and TRPV1 with strong liver cancer prognostic
potential for subsequent validation.

F2, GOT2, and TRPV1 Were Downregulated in HCC

Tissues
The gene expression in HCC was determined based on
three independent microarrays which are all collected in
Oncomine database (https://www.oncomine.org/resource/login.
html). As shown in Roessler Liver 2 Statistics (225 HCC

tissues vs. 220 liver tissues), the expression of F2, GOT2,
and TRPV1 in HCC tissues were all significantly down-
regulated compared with that in normal liver tissues. (p <0.001;
Figure 6) In addition, based on the Mas Liver Statistics (38
HCC tissue vs. 19 liver tissue), both F2 and TRPV1 were
significantly down-regulated in HCC tissues. Based on the
Chen Liver Statistics (104 HCC tissues vs. 76 liver tissues),
both F2 and GOT2 were significantly down-regulated in
HCC tissues.

The qRT-PCR results of F2, GOT2 and TRPV1 showed that
20/20, 19/20, and 16/19 of the HCC tissues exhibited significantly
lower expression of F2 (p < 0.001; Figure 7A), GOT2 (p < 0.001;
Figure 7B), and TRPV1 (p = 0.006; Figure 7C), respectively,
when compared with their corresponding non-tumorous tissues.

The protein expression of F2, GOT2, and TRPV1 in HCC
tissues was evaluated using IHC. Positive staining of F2, GOT2,
and TRPV1 was mainly localized in the cytoplasm of HCC cells.
The representative staining of F2, GOT2, and TRPV1 negative
and positive protein expression in HCC are shown in Figure 8A.

Among 90 HCC tissues and adjacent non-malignant liver
tissues, IHC was employed to measure the protein expression
of F2, GOT2, and TRPV1, respectively. Low F2 expression was
observed in 62/89 (69.66%) of the HCC tissues, compared to
33/89 (37.08%) in adjacent normal liver tissues (p < 0.001);
low GOT2 expression was noted in 72/89 (80.90%) of the HCC
tissues, compared to 32/89 (35.96%) in adjacent normal liver
tissues (p < 0.001); low TRPV1 expression was also observed in
59/89 (66.29%) of the HCC tissues, compared to 38/89 (42.70%)
in adjacent normal liver tissues (p= 0.002).
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Liu et al. Multi-Gene Prognostic Signatures Identification

FIGURE 2 | Association of DFS and the top 15 three-gene-combinations with smallest p-values, using the data of HCC samples in a TCGA cohort and assessed by

Kaplan-Meier analyses. The high expression group (blue line) of the combination consisted of samples with high expression of all three genes, and the low expression

group (green line) of the combination consisted of samples with low expression of all three genes. The number of high and low expression groups in each combination

was >25. (A) Association of DFS and the top 15 combinations of the overall genes combinations. (B) Association of DFS and the top 15 combinations of the

unreported genes combinations.

Expression of F2, GOT2, and TRPV1 and Their

Combination F2-GOT2-TRPV1 With OS
Based on the above results of single-genes and three-
gene combinations survival analyses of TCGA HCC
samples, the low expression of F2, GOT2, TRPV1 and their

combination F2-GOT2-TRPV1 was significantly associated
with poor OS in HCC. (F2: p = 0.005; GOT2: p < 0.001;
TRPV1: p = 0.002; F2-GOT2-TRPV1: p < 0.001). In
addition, the median survival time difference between the
high expression group and the low expression group of
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FIGURE 3 | Association of DFS and the individual genes contained in the top 15 combinations with the lowest P-values, using the data of HCC samples in a TCGA

cohort and assessed by Kaplan-Meier analyses. (A) Association of DFS and the 17 single genes contained in the first 15 total-gene combinations. (B) Association of

DFS and the 16 single genes contained in the first 15 unreported-gene combinations.
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TABLE 2 | The associations of three-gene combinations with disease-free survival (DFS) of HCC patients in a TCGA cohort, analyzed by Kaplan-Meier method.

DFS (Median) of combinations of 39 genes with HCC prognosis DFS (Median) of combinations of 18 genes have unknown association with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

DNASE1-PPIA

-TUSC1

H 9.490 1.597 6.360 12.620 0.000 −62.420 CD4-F7

-TRPV1

H 71.910 20.619 31.498 112.322 0.000 65.010

L 71.910 24.365 24.154 119.666 L 6.900 1.657 3.652 10.148

Overall 21.620 4.848 12.119 31.121 Overall 15.740 5.309 5.334 26.146

CD4-F7

-TRPV1

H 71.910 20.619 31.498 112.322 0.000 65.010 CD4-F7

-LMOD1

H 70.070 – – – 0.000 63.830

L 6.900 1.657 3.652 10.148 L 6.240 1.408 3.480 9.000

Overall 15.740 5.309 5.334 26.146 Overall 17.640 3.833 10.127 25.153

CD4-F7

-GNMT

H 71.910 22.303 28.196 115.624 0.000 63.370 CD4-COL18A1

-F7

H 67.580 21.110 26.205 108.955 0.000 59.660

L 8.540 1.241 6.108 10.972 L 7.920 1.658 4.670 11.170

Overall 21.160 4.039 13.244 29.076 Overall 19.190 3.616 12.104 26.276

CD4-F7

-LMOD1

H 70.070 – – – 0.000 63.830 CD4-FLT3

-SPPL2A

H 70.070 18.005 34.779 105.361 0.000 62.220

L 6.240 1.408 3.480 9.000 L 7.850 1.486 4.937 10.763

Overall 17.640 3.833 10.127 25.153 Overall 19.650 7.275 5.391 33.909

CD4-COL18A1

-F7

H 67.580 21.110 26.205 108.955 0.000 59.660 C5-CD4

-F7

H 67.580 15.374 37.447 97.713 0.000 59.660

L 7.920 1.658 4.670 11.170 L 7.920 1.414 5.149 10.691

Overall 19.190 3.616 12.104 26.276 Overall 21.160 5.704 9.981 32.339

APOB-CD4

-SLCO1B1

H 66.620 13.239 40.672 92.568 0.000 57.130 CD4-F7

-SELP

H 71.910 3.184 65.669 78.151 0.000 63.200

L 9.490 0.918 7.691 11.289 L 8.710 0.783 7.176 10.244

Overall 19.650 4.976 9.897 29.403 Overall 21.550 8.496 4.898 38.202

CD4-CPT2

-F7

H 71.910 21.206 30.347 113.473 0.000 64.060 CD4-F7

-PRF1

H 70.070 15.899 38.908 101.232 0.000 61.500

L 7.850 2.024 3.883 11.817 L 8.570 1.055 6.502 10.638

Overall 15.700 2.776 10.259 21.141 Overall 21.160 3.455 14.389 27.931

CD4-F7

-PER1

H 70.070 2.855 64.475 75.665 0.000 61.500 CD4-SELP

-SPPL2A

H 70.070 3.849 62.525 77.615 0.000 61.500

L 8.570 1.225 6.170 10.970 L 8.570 0.819 6.964 10.176

Overall 25.300 8.227 9.175 41.425 Overall 18.590 5.837 7.149 30.031

APOB-CD4

-SPPL2A

H 70.070 23.928 23.171 116.969 0.000 60.940 CD4-F7

-FLT3

H 70.070 3.048 64.097 76.043 0.000 61.360

L 9.130 0.855 7.455 10.805 L 8.710 1.311 6.140 11.280

(Continued)
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TABLE 2 | Continued

DFS (Median) of combinations of 39 genes with HCC prognosis DFS (Median) of combinations of 18 genes have unknown association with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

Overall 19.190 4.689 10.000 28.380 Overall 35.580 12.142 11.781 59.379

CD4-FLT3

-SPPL2A

H 70.070 18.005 34.779 105.361 0.000 62.220 CD4-F7

-SPPL2A

H – – – – 0.000 –

L 7.850 1.486 4.937 10.763 L 7.920 1.864 4.266 11.574

Overall 19.650 7.275 5.391 33.909 Overall 24.770 19.276 0.000 62.551

DNASE1-PPAT

-TUSC1

H 7.420 1.115 5.235 9.605 0.000 −39.620 DAND5-PPAT

-PPIA

H 8.540 0.797 6.978 10.102 0.000 −33.480

L 47.040 17.350 13.035 81.045 L 42.020 15.014 12.592 71.448

Overall 21.160 5.101 11.162 31.158 Overall 19.250 2.763 13.834 24.666

APOB-CD4

-F7

H 67.580 13.500 41.120 94.040 0.000 58.840 CD4-CETP

-KNG1

H 50.030 14.498 21.614 78.446 0.000 41.550

L 8.740 0.884 7.007 10.473 L 8.480 0.769 6.972 9.988

Overall 24.770 9.057 7.018 42.522 Overall 18.330 1.894 14.617 22.043

CD4-SLCO1B1

-SPPL2A

H 71.910 – – – 0.000 62.420 C5-F7

-ITGB2

H 67.580 14.028 40.084 95.076 0.000 59.010

L 9.490 1.171 7.194 11.786 L 8.570 1.316 5.991 11.149

Overall 19.650 6.519 6.873 32.427 Overall 35.580 9.185 17.577 53.583

C5-CD4

-F7

H 67.580 15.374 37.447 97.713 0.000 59.660 CD4-F7

-KNG1

H – – – – 0.000 –

L 7.920 1.414 5.149 10.691 L 8.740 1.206 6.376 11.104

Overall 21.160 5.704 9.981 32.339 Overall 21.550 8.293 5.295 37.805

CD4-GNMT

-LMOD1

H 50.030 16.348 17.987 82.073 0.000 41.550 CD4-CETP

-SELP

H 66.620 14.883 37.450 95.790 0.000 56.370

L 8.480 1.430 5.677 11.283 L 10.250 1.315 7.672 12.828

Overall 18.330 2.734 12.971 23.689 Overall 18.330 1.469 15.452 21.208
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TABLE 3 | The associations of single genes contained in the multi-gene combinations with disease-free survival (DFS) and overall survival (OS) of HCC patients in a TCGA cohort, analyzed by Kaplan-Meier method.

DFS (Median) of single genes of the combinations with HCC prognosis OS (Median) of single genes of the combinations with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% Confidence Interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

APOB H 29.300 6.376 16.802 41.798 0.008 14.450 ANXA7 H 83.180 15.496 52.807 113.553 0.006 36.430

L 14.850 2.049 10.834 18.866 L 46.750 7.280 32.481 61.019

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

C5 H 29.960 6.762 16.706 43.214 0.001 16.330 ATG7 H 45.070 8.031 29.330 60.810 0.009 −35.610

L 13.630 2.870 8.006 19.254 L 80.680 10.533 60.036 101.324

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

CD4 H 36.700 7.693 21.622 51.778 0.000 23.070 CA9 H 37.290 8.317 20.989 53.591 0.000 −32.720

L 13.630 2.089 9.536 17.724 L 70.010 10.210 49.999 90.021

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

CETP H 35.580 5.896 24.023 47.137 0.002 21.450 CCNA2 H 45.070 10.298 24.885 65.255 0.001 −24.940

L 14.130 1.799 10.605 17.655 L 70.010 11.730 47.019 93.001

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

COL18A1 H 27.200 4.885 17.625 36.775 0.005 11.600 CHD1L H 39.750 6.940 26.148 53.352 0.006 −40.930

L 15.600 3.114 9.497 21.703 L 80.680 6.587 67.770 93.590

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

CPT2 H 29.300 4.767 19.956 38.644 0.005 14.350 EZH2 H 37.290 10.181 17.335 57.245 0.000 −43.390

L 14.950 1.836 11.352 18.548 L 80.680 10.816 59.480 101.880

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

DAND5 H 13.630 2.561 8.610 18.650 0.001 −16.330 F2 H 69.510 11.842 46.300 92.720 0.005 23.620

L 29.960 5.455 19.269 40.651 L 45.890 7.020 32.132 59.648

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

DNASE1 H 13.140 1.997 9.226 17.054 0.001 −16.160 GMPS H 45.070 9.667 26.123 64.017 0.003 −24.440

L 29.300 4.256 20.958 37.642 L 69.510 10.308 49.306 89.714

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

F7 H 33.900 8.191 17.846 49.954 0.000 18.490 GOT2 H 70.010 12.025 46.441 93.579 0.000 32.260

L 15.410 1.485 12.500 18.320 L 37.750 9.383 19.360 56.140

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

FLT3 H 35.580 3.640 28.446 42.714 0.000 22.440 HPX H 69.510 10.518 48.894 90.126 0.002 23.620

L 13.140 1.833 9.547 16.733 L 45.890 10.112 26.070 65.710

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

GNMT H 29.300 9.167 11.334 47.266 0.002 13.370 HDAC2 H 45.070 8.365 28.675 61.465 0.002 −35.610

L 15.930 1.821 12.360 19.500 L 80.680 12.796 55.599 105.761

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

(Continued)
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TABLE 3 | Continued

DFS (Median) of single genes of the combinations with HCC prognosis OS (Median) of single genes of the combinations with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% Confidence Interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

ITGB2 H 35.580 4.232 27.285 43.875 0.002 19.840 KPNA2 H 33.020 8.165 17.017 49.023 0.000 −47.660

L 15.740 2.671 10.504 20.976 L 80.680 6.908 67.139 94.221

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

KNG1 H 25.300 6.478 12.603 37.997 0.007 9.600 LAPTM4B H 45.070 10.511 24.468 65.672 0.000 −35.610

L 15.700 2.458 10.882 20.518 L 80.680 12.598 55.988 105.372

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

LMOD1 H 29.660 5.120 19.625 39.695 0.004 13.960 MAPT H 41.750 6.888 28.249 55.251 0.006 −28.260

L 15.700 2.655 10.497 20.903 L 70.010 9.844 50.716 89.304

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

PER1 H 25.490 6.529 12.694 38.286 0.003 10.080 MPV17 H 37.290 6.644 24.268 50.312 0.000 −43.390

L 15.410 3.485 8.579 22.241 L 80.680 6.504 67.933 93.427

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

PPAT H 14.130 2.656 8.924 19.336 0.000 −19.770 NTF3 H 70.010 12.704 45.110 94.910 0.002 29.640

L 33.900 5.401 23.314 44.486 L 40.370 8.143 24.409 56.331

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

PPIA H 15.600 1.475 12.709 18.491 0.000 −13.280 PPAT H 58.840 14.928 29.580 88.100 0.009 −10.670

L 28.880 7.575 14.033 43.727 L 69.510 11.354 47.256 91.764

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

PRF1 H 29.960 4.358 21.418 38.502 0.000 17.350 SLC2A1 H 45.890 6.187 33.763 58.017 0.000 −37.290

L 12.610 2.004 8.681 16.539 L 83.180 17.113 49.638 116.722

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

SELP H 29.960 6.294 17.624 42.296 0.001 14.260 SLC38A1 H 45.070 3.919 37.389 52.751 0.001 −35.610

L 15.700 2.465 10.868 20.532 L 80.680 7.141 66.684 94.676

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

SLCO1B1 H 35.840 10.368 15.518 56.162 0.000 20.890 SPP1 H 40.370 5.288 30.005 50.735 0.000 −29.640

L 14.950 1.359 12.286 17.614 L 70.010 13.016 44.498 95.522

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

SPPL2A H 27.200 5.000 17.399 37.001 0.005 11.790 TRPV1 H 80.680 7.672 65.642 95.718 0.002 35.610

L 15.410 2.331 10.842 19.978 L 45.070 6.030 33.250 56.890

Overall 20.930 2.318 16.387 25.473 Overall 55.650 7.925 40.116 71.184

TRPV1 H 29.660 6.127 17.652 41.668 0.005 13.530

L 16.130 1.962 12.284 19.976

Overall 20.930 2.318 16.387 25.473

TUSC1 H 15.740 2.003 11.814 19.666 0.001 −18.160

L 33.900 8.193 17.841 49.959

Overall 20.930 2.318 16.387 25.473
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FIGURE 4 | Association of the top 15 three-gene-combinations with smallest p-values with OS, using the data of HCC samples in a TCGA cohort and assessed by

Kaplan-Meier analyses. The high expression group (blue line) of the combination consisted of samples with high expression of all three genes, and the low expression

group (green line) of the combination consisted of samples with low expression of all three genes. The number of high and low expression groups in each combination

was >25. (A) Association of OS and the top 15 combinations with the smallest p-values of the overall genes combinations. (B) Association of OS and the top 15

combinations with the smallest p-values of the unreported genes combinations.

F2-GOT2-TRPV1 was greater than that of any of the three
single genes.

The results of IHC for 90 liver cancer cases showed that
the low protein expression of F2, GOT2, and TRPV1 was
significantly associated with lower 5-year survival in HCC
patients (F2: p = 0.033, GOT2: p = 0.035, TRPV1: p =

0.046; K-M survival analyses). However, due to the insufficient
number of events in the co-high expression group of the
combination F2-GOT2-TRPV1, there was marginally significant
difference found in the overall survival rate of HCC patients
between the co-high expression group and the co-low expression
group of the protein combination F2-GOT2-TRPV1 (p = 0.051)
(Figure 8B).

DISCUSSION

Liver cancer is characterized by inconspicuous early symptoms,
a high degree of malignancy, recurrence and spread, and
unsatisfactory prognosis. With limited treatment options, it
is one of the common malignancies that plague the world.
Therefore, identification of effective prognostic biomarkers for
liver cancer is the key to improving the efficacy of targeted
therapy for HCC and reducing the adverse prognostic effects of
liver cancer.

In our study, by combining and searching 15 corresponding
concepts of the key words “liver cancer,” “prognosis,” and
“outcome,” and according to p-values < 0.05, 1,173 genes that
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FIGURE 5 | Association of OS and the individual genes contained in the top 15 combinations with the lowest P-values, using the data of HCC samples in a TCGA

cohort and assessed by Kaplan-Meier analyses. (A) Association of OS and the 14 single genes contained in the first 15 total-gene combinations. (B) Association of

OS and the 11 single genes contained in the first 15 unreported-gene combinations.
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TABLE 4 | The associations of three-gene combinations with overall survival (OS) of HCC patients in a TCGA cohort, analyzed by Kaplan-Meier method.

OS (Median) of combinations of 28 genes with HCC prognosis OS (Median) of combinations of 12 genes have unknown association with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

EZH2-KPNA2

-MPV17

H 21.320 6.143 9.280 33.360 0.000 −59.360 GOT2-NTF3

-TRPV1

H – – – – 0.000 –

L 80.680 7.061 66.841 94.519 L 25.230 3.764 17.852 32.608

Overall 55.350 13.443 29.001 81.699 Overall 60.840 15.622 30.220 91.460

EZH2-LAPTM4B

-MPV17

H 18.230 5.735 6.988 29.472 0.000 −62.450 MPV17-PPAT

-SLC2A1

H 18.330 4.916 8.695 27.965 0.000 −64.850

L 80.680 7.990 65.020 96.340 L 83.180 15.794 52.224 114.136

Overall 48.950 10.014 29.323 68.577 Overall 53.350 15.422 23.123 83.577

CA9-KPNA2

-SPP1

H 23.780 5.368 13.259 34.301 0.000 −59.400 MPV17-SLC2A1

-SLC38A1

H 25.130 9.272 6.957 43.303 0.000 −58.050

L 83.180 16.292 51.248 115.112 L 83.180 7.322 68.829 97.531

Overall 51.250 11.668 28.381 74.119 Overall 46.750 6.571 33.870 59.630

CA9-KPNA2

-LAPTM4B

H 19.740 3.699 12.490 26.990 0.000 −63.440 GOT2-HPX

-NTF3

H 70.010 10.631 49.174 90.846 0.000 50.430

L 83.180 20.669 42.669 123.691 L 19.580 6.243 7.343 31.817

Overall 46.750 6.141 34.715 58.785 Overall 55.350 6.783 42.055 68.645

KPNA2-SLC38A1

-SPP1

H 19.090 6.876 5.614 32.566 0.000 −83.570 MAPT-SLC2A1

-SLC38A1

H 25.130 9.134 7.227 43.033 0.000 −58.050

L 102.660 21.958 59.622 145.698 L 83.180 12.085 59.493 106.867

Overall 69.510 10.951 48.047 90.973 Overall 45.890 7.002 32.167 59.613

HDAC2-KPNA2

-SPP1

H 23.780 5.613 12.778 34.782 0.000 −78.880 MAPT-MPV17

-SLC38A1

H 25.130 4.047 17.197 33.063 0.000 −58.050

L 102.660 14.189 74.850 130.470 L 83.180 9.720 64.128 102.232

Overall 83.180 21.672 40.704 125.656 Overall 45.070 6.284 32.754 57.386

CHD1L-EZH2

-SPP1

H 15.410 4.012 7.547 23.273 0.000 −67.770 GOT2-HPX

-TRPV1

H 83.180 11.770 60.111 106.249 0.000 50.160

L 83.180 9.866 63.842 102.518 L 33.020 6.971 19.356 46.684

Overall 46.750 12.305 22.633 70.867 Overall 70.010 14.673 41.251 98.769

EZH2-KPNA2

-LAPTM4B

H 21.680 5.445 11.008 32.352 0.000 −59.000 ANXA7-F2

-NTF3

H 83.510 15.702 52.734 114.286 0.000 58.640

(Continued)
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TABLE 4 | Continued

OS (Median) of combinations of 28 genes with HCC prognosis OS (Median) of combinations of 12 genes have unknown association with HCC prognosis

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Estimate Std. Error 95% confidence interval P Median survival

time difference

(H-L)

Lower

boundary

Upper

boundary

Lower

boundary

Upper

boundary

L 80.680 7.011 66.939 94.421 L 24.870 10.561 4.170 45.570

Overall 46.750 10.389 26.388 67.112 Overall 53.350 14.230 25.459 81.241

KPNA2-MPV17

-SLC38A1

H 17.580 5.820 6.172 28.988 0.000 −63.100 ANXA7-GOT2

-NTF3

H 83.180 23.271 37.569 128.791 0.000 62.580

L 80.680 7.992 65.015 96.345 L 20.600 5.417 9.983 31.217

Overall 53.350 11.888 30.049 76.651 Overall 48.950 7.670 33.916 63.984

ATG7-KPNA2

-PPAT

H 21.120 6.087 9.190 33.050 0.000 −59.560 ANXA7-GOT2

-HPX

H 83.180 13.677 56.373 109.987 0.000 58.310

L 80.680 10.953 59.212 102.148 L 24.870 8.505 8.200 41.540

Overall 45.530 11.839 22.325 68.735 Overall 53.290 13.890 26.066 80.514

GMPS-LAPTM4B

-SLC2A1

H 17.970 6.680 4.876 31.064 0.000 −65.210 MAPT-PPAT

-SLC2A1

H 20.110 6.433 7.501 32.719 0.000 −63.070

L 83.180 16.018 51.784 114.576 L 83.180 14.580 54.602 111.758

Overall 53.350 13.670 26.557 80.143 Overall 70.010 18.751 33.258 106.762

CHD1L-LAPTM4B

-MPV17

H 24.870 4.882 15.302 34.438 0.000 −55.810 F2-GOT2

-TRPV1

H 83.180 11.976 59.707 106.653 0.000 55.680

L 80.680 7.912 65.172 96.188 L 27.500 6.805 14.162 40.838

Overall 55.650 10.709 34.660 76.640 Overall 81.670 20.419 41.649 121.691

ATG7-GMPS

-PPAT

H 13.960 4.451 5.236 22.684 0.000 −66.720 F2-GOT2

-HPX

H 83.180 6.650 70.146 96.214 0.000 45.890

L 80.680 17.665 46.057 115.303 L 37.290 7.225 23.129 51.451

Overall 37.680 8.510 21.001 54.359 Overall 69.510 12.170 45.657 93.363

CCNA2-LAPTM4B

-MPV17

H 18.330 3.559 11.354 25.306 0.000 −51.680 MPV17-PPAT

-SLC38A1

H 20.600 5.930 8.977 32.223 0.000 −60.080

L 70.010 6.190 57.878 82.142 L 80.680 9.365 62.324 99.036

Overall 48.950 7.272 34.697 63.203 Overall 51.250 13.888 24.030 78.470

KPNA2-LAPTM4B

-MPV17

H 21.320 5.082 11.359 31.281 0.000 −59.360 ANXA7-HPX

-NTF3

H 83.180 26.573 31.096 135.264 0.000 58.310

L 80.680 7.900 65.196 96.164 L 24.870 7.244 10.672 39.068

Overall 51.250 14.898 22.050 80.450 Overall 48.950 5.919 37.350 60.550
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FIGURE 6 | Expression of F2, GOT2, and TRPV1 in HCC and adjacent normal liver tissues confirmed by independent microarrays from the Oncomine database. The

expression of (A) F2, (B) GOT2, and (C) TRPV1 were all significantly reduced in HCC tissues by the Roessler Liver 2 Statistics [225 HCC tissues (dark blue) vs. 220

normal liver tissues (light blue)]. ***p < 0.001.

FIGURE 7 | The relative expression levels of F2, GOT2, and TRPV1 were assessed by qRT-PCR in HCC tissues and adjacent liver tissues. (A) The expression levels of

F2 were assessed by qRT-PCR in 20 pairs of HCC tissues and peritumoral tissues. Paired t-test, ***p < 0.001. (B) The relative expression levels of GOT2 were

assessed by qRT-PCR in 19 pairs of HCC tissues and peritumoral tissues. Paired t-test, ***p < 0.001. (C) The relative expression levels of TRPV1 were assessed by

qRT-PCR in 19 pairs of HCC tissues and peritumoral tissues. Paired t-test, log, **p < 0.01.

may be related to the prognosis of liver cancer were mined from
the Coremine platform after merging and removing duplicates.
However, due to the insufficient sample size and data related to
the prognosis of liver cancer in the Coremine platform as well as
the large heterogeneity among the samples, we also selected gene
expression data and prognosis data of 319 samples for DFS and
370 samples for OS from the TCGA platform.We then separately
conducted DFS-related and OS-related K-M survival analysis for
each gene, followed by multivariate analyses, respectively. The
large-scale genes mining and a large number of homogenous
samples gave us a reliable analytical foundation. By far, this is
the first large-scale survival analyses for hundreds of genes for
subsequent screening.

In addition, the genes selected by K-M survival analyses with
a low p-value (p < 0.01) were further screened by multivariate
analyses using the Cox proportional hazards regression model.
We found that 39 genes and 28 genes were reliably and
significantly associated with DFS and OS, respectively, in liver
cancer. Many of the above genes have been confirmed to be
associated with the prognosis of HCC by previous reports. For

example, of the 39 DFS-related genes, ALDOB inhibits metastasis
in HCC and can be a valuable novel prognosis predicting marker
(30); APOB was found to be a prognostic biomarker for patients
with radical resection of HCC (31, 32); CCNF is downregulated
in HCC and is a promising prognostic marker (33). In addition,
CPT2 (34), G6PD (35), GNMT (36), NEK2 (37), etc. have also
been reported to be prognostic markers of HCC by affecting the
occurrence or invasion of HCC. The above findings are consistent
with what we identified. Other genes, such as C5, CD4, CETP,
COL18A1, DAND5, DNASE1, EBPL, F7, FLT3, ITGB2, KNG1,
LMOD1, PPAT, PPIA, PRF1, SELP, SPPL2A, and TRPV1 that
have not been systematically reported in relation to the prognosis
of liver cancer, are our newly discovered prognostic markers
for DFS in liver cancer. Similarly, of the 28 OS-related genes,
CA9 regulates the epithelial-mesenchymal transition and is a
novel prognostic marker in HCC (38), E2F1 expression has an
impact on tumor aggressiveness and affects the prognosis of HCC
(14, 15), CYP3A4 (39), HDAC2 (40), and KPNA2 (41) have also
been identified as prognostic markers of HCC and are reflected in
our findings. The other genes, such as ANXA7, F2, GOT2, HPX,
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FIGURE 8 | The expression of F2, GOT2, and TRPV1 in 90 pairs of HCC and adjacent normal liver tissues of biological tissue microarray by IHC, and the association

with HCC patients prognosis. (A) Negative, weakly positive, intermediately positive, and strongly positive IHC staining of F2, GOT2, and TRPV1. F2, GOT2, and

TRPV1 were all low expressed in liver cancer. (B) The lower protein expression levels of F2, GOT2, and TRPV1 were all associated with 5-year OS of 90 HCC patients,

examing by Kaplan-Meier analyses and log-rank test. However, there was marginally significant association between the F2-GOT2-TRPV1 combination protein

expression levels with the OS of HCC patients. (F2: p = 0.033, GOT2: p = 0.035, TRPV1: p = 0.046, F2-GOT2-TRPV1: p = 0.051).
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MAGEB3, MAPT, MPV17, NTF3, PPAT, SLC2A1, SLC38A1, and
TRPV1 are all novel prognostic markers associated with liver
cancer OS found by our reliable and large-scale screening studies.
Three genes (APOB, PPAT, and TRPV1) were associated with
both DFS and OS of HCC, suggesting that APOB, PPAT, and
TRPV1 may be significant and effective in predicting both the
progress and the adverse outcomes of HCC.

Moreover, theremay be connections among the above selected
genes and they can work together to influence the development
and prognosis of liver cancer to some extent. Although there
are some genes that had been reported as prognostic molecular
markers of liver cancer, most reports focused on the impact
of a single gene on the prognosis of liver cancer, few studies
performed such a large-scale survival analysis. Studies of multiple
gene combinations are more effective than the analysis of single
genes in predicting the prognosis of liver cancer.

In our study, we performed three-gene combinations of the
39 DFS-related genes and 28 OS-related genes screened from the
above survival analyses. In order to further study the predictive
effect of the combinations constituted by the selected genes on
the prognosis of liver cancer, and to compare the predictive
power of single genes and corresponding gene combinations,
we carried out thousands of K-M survival analyses on these
combinations. To ensure the comparability and credibility, we
removed the combinations of which the co-high or co-low
expression group cases were fewer than 26, and screened 2,758
DFS-related combinations and 930 OS-related combinations
with p-values < 0.01. Moreover, we also performed three-gene-
combination models and K-M survival analyses on the 18 DFS-
related genes and 12 OS-related genes we found but have not
been systematically reported to be related to the prognosis of
HCC. 317 unreported-gene combinations and 31 unreported-
gene combinations significantly associated with DFS and OS,
respectively, were screened out.

For the above four types of three-gene-combinations (the
overall genes combinations associated with DFS, the unreported
genes combinations associated with DFS, the overall genes
combinations associated with OS, and the unreported genes
combinations associated with OS), the top 15 combinations with
the lowest p-values of the survival analyses and the genes they
contained were, respectively, selected for comparison (Tables 2,
3, 4).

For example, for the overall gene combinations associated
with OS, KPNA2-SLC38A1-SPP1, the median survival time
difference between the co-high and the co-low expression group
was 83.57 months. In contrast, that of the single genes KPNA2,
SLC38A1, and SPP1, was 47.66, 35.61, and 29.64 months,
respectively. After combining KPNA2, SLC38A1, and SPP1, the
median survival time difference between the high and low
expression groups was larger than that of any of the three single
genes by at least 36 months. This shows that these three genes
KPNA2, SLC38A1, and SPP1, after combination, may be better
predictive values for liver cancer prognosis and may be more
clinically useful for future treatment target selection.

We also selected genes that have not been previously reported
for liver cancer prognosis and compared their prognostic efficacy
with the corresponding three-gene combinations (the chart only

shows the top 15 groups with the lowest p-values of the three-
gene combinations prognostic models). The expression of one
of the combinations F2-GOT2-TRPV1 had a greater effect on
the median survival time of OS than any of the three individual
genes (The median survival time difference: F2-GOT2-TRPV1:
55.68 months; F2: 23.62 months; GOT2: 32.26 months; TRPV1:
35.61 months).

Coagulation factor II (F2) plays a major role in proteolysis
to form thrombin in the first step of the coagulation cascade
and eventually generates hemostasis. An enrichment analysis
of genetic changes during the development of HCC identified
several hub genes, including F2, which interacts in several groups
of conditional specific PPI networks (42). Additionally, it was
reported that F2 is associated with invasion in neuroendocrine
prostate cancer (43). Glutamic-oxaloacetic transaminase 2
(GOT2) plays an important role in amino acid metabolism and
the tricarboxylic acid cycle, and it affects the malate-aspartic acid
shuttle activity and glycolysis in the liver under the stimulation
of liver inflammation. (44, 45) TRPV1 is a regulator of cell
homeostasis, previous studies have revealed that the expression
of TRPV1 is significantly decreased in renal cell carcinoma,
colorectal cancer, and melanoma. In addition, TRPV1 can affect
P53 and TRPV1-dependent pathways to inhibit the growth
of colorectal cancer and melanoma (46–48), and can cause
apoptosis in human osteosarcoma MG63 cells (49).

At present, there are few studies on the above three genes
F2, GOT2, TRPV1 and particular their combinations in the
prognosis of HCC. In our study, the results of the 20 pairs of
HCC and paracancerous tissues for qRT-PCR, as well as 90 pairs
HCC biochips for IHC confirmed that all of the F2, GOT2, and
TRPV1 genes are significantly and consistently down-expressed
in HCC tissues, and this is reconfirmed by three independent
microarrays. Moreover, the low expression of F2, GOT2, and
TRPV1 were all significantly associated with poor prognosis of
HCC. However, due to the number of death events in the F2-
GOT2-TRPV1 high expression group of in the HCC biochips
being 0, the survival analysis of the F2-GOT2-TRPV1 high and
the expression group was marginally significant (p = 0.051), but
this is still consistent with our above-mentioned big data-based
multi-gene combination survival analysis results.

As there may be certain relationships between the genes we
screened that are significantly associated with the prognosis
of liver cancer, they can work together in the form of multi-
gene combinations in the development of liver cancer. However,
the predictive potency of different gene combinations varies.
Some combinations are better predictors than individual genes,
and therefore these combinations may be more valuable than
individual genes in determining the target site for liver cancer
prognosis. Due to limitations in human and material resources,
it still remains unclear how these genes and gene combinations
specifically affect the HCC survival. Further investigation
and experimentations are needed to elucidate the biological
mechanisms of the selected genes, particularly for the significant
multi-gene combinations, in the development and progression
of HCC.

Our findings cover a large gene level, and we have
also explored the predictive efficacy of a number of gene
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combinations for the prognosis of liver cancer. We believe
that these highly significant prognostic-related genes and gene
combinations derived from the above multiple screenings are
promising, reliable molecular markers for the prognosis of liver
cancer, and our screening methods can be extended to other
tumor types.

In conclusion, based on a large sample size of public
data platform, novel and effective data mining and multiple
screening methods, large-scale survival analyses, as well as
supplemental reliable experimental verification, we identified
a series of novel genes and multi-gene combinations that
are significantly associated with DFS or OS in liver cancer.
Moreover, a huge difference between high and low expression
group of these three-gene combination was detected. Some
of the three-gene combinations can predict much longer
or shorter survival time for liver cancer patients than the
single genes. QRT-PCR, immunohistochemistry, and three
independent microarray results confirmed our findings that
three of the selected novel genes F2, GOT2, and TRPV1, as
well as the corresponding combination F2-GOT2-TRPV1,
showed significantly lower expression in HCC and are
associated with OS in HCC. Some gene combinations may
be more predictors of prognosis than single genes and
can be used as potential effective therapeutic targets for
liver cancer.
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Integrative, single-cell analyses may provide unprecedented insights into cellular

and spatial diversity of the tumor microenvironment. The sparsity, noise, and high

dimensionality of these data present unique challenges. Whilst approaches for integrating

single-cell data are emerging and are far from being standardized, most data integration,

cell clustering, cell trajectory, and analysis pipelines employ a dimension reduction step,

frequently principal component analysis (PCA), a matrix factorization method that is

relatively fast, and can easily scale to large datasets when used with sparse-matrix

representations. In this review, we provide a guide to PCA and related methods.

We describe the relationship between PCA and singular value decomposition, the

difference between PCA of a correlation and covariance matrix, the impact of scaling,

log-transforming, and standardization, and how to recognize a horseshoe or arch effect

in a PCA. We describe canonical correlation analysis (CCA), a popular matrix factorization

approach for the integration of single-cell data from different platforms or studies. We

discuss alternatives to CCA and why additional preprocessing or weighting datasets

within the joint decomposition should be considered.

Keywords: data integration, matrix factorization, single cell, scRNA-seq, normalization, standardization, data

preprocessing

INTRODUCTION

Single-cell (sc) molecular profiling provides unprecedented resolution and incredible potential to
discover the heterogeneity of cell types and states and intercellular communication that drives
complex cellular dynamics, homeostasis, response to environment, and disease. We will focus
this review on the challenges and considerations when applying matrix factorization approaches
to integration of sc RNA sequencing data (scRNA-seq). Matrix factorization methods, including
principal component analysis (PCA), are central to scRNA-seq data analysis pipelines, but are often
treated as “black boxes” within computational pipelines, with little consideration of what steps
are included. We will “open the box” to illustrate the exact scaling and transformations that are
performed on data in a PCA, and how different preprocessing steps impact data and cross-platform
batch integration. These tips and considerations will also apply other single cell omics data, as well
as to multi-modal integration of different omics data.

Challenging Properties of Single Cell Data
Single-cell data present a set of unique challenges for data analysis and integration (1–3). In contrast
to traditional bulk RNA-seq which provides the average expression of RNA molecules across tens
of thousands or millions of cells, scRNA-seq measures RNA in each cell.

96

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00973
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00973&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aedin@ds.dfci.harvard.edu
https://doi.org/10.3389/fonc.2020.00973
https://www.frontiersin.org/articles/10.3389/fonc.2020.00973/full
http://loop.frontiersin.org/people/871565/overview
http://loop.frontiersin.org/people/871237/overview


Hsu and Culhane Integrative Analysis of Single Cell Data

The goal of scRNA-seq is frequently to define differential
gene expression within specific cell types that characterize
a phenotype, so cell type identification is a critical early
step. In a tissue or biological sample, the population of
cells is heterogeneous, containing many cell types including
unidentified, new cell types, and cell states. Annotation of
cell types in biological samples is challenging, as methods are
still emerging and are limited by a lack of gold standard
benchmarking data. To classify cell types and states,
unsupervised clustering analysis is often used to partition
cells into clusters, however, the biologically expected cell-to-
cell variation within cell states is poorly understood, and cell
clusters may be associated with systematic, batch, technical,
or methodological artifacts (1). Toward the goal of creating
a comprehensive cell type and state reference, the Human
Cell Atlas will catalog the diversity of cell types in the human
body (4) and anticipates discovering distinct tissue-specific,
disease-specific, age-specific, gender-specific cell phenotypes,
and will identify many new cell types and states that are yet to
be defined.

Most, or at least half, of the transcriptome, is detected in
a typical bulk RNAseq study. In contrast, scRNA-seq studies
frequently measure <5,000 genes in a single cell (1). Most
genes are not measured and these zero counts may represent
zero gene expression or false negative dropout, that is, when a
gene was expressed but was not detected due to technological
limitations (3, 5) such as limited sequencing depth or stochastic
variation. Gene expression may also be missed due to biological
variance; single point-in-time measurements cannot capture
dynamic processes, such as RNA transcriptional bursts. Emerging
evidence suggests transcription occurs in bursts or pulses that
depend on core promoter and enhancers (6) and a three-state
model may be required to capture its biological complexity (7).
These issues of scRNA-seq analysis underscore the importance
of appropriate quality control, preprocessing, and normalization
(1, 8).

Preprocessing of sc Sequencing Data
Several library preparation and read mapping approaches
including genome or transcriptome mapping and pseudo-
alignment can be used to generate a “raw” or unique molecular
identifier (UMI) count matrix from sequencing reads (9), but in
a comparison of over 3,000 preprocessing and analysis pipelines,
Vieth et al. found normalization of the count matrix had greatest
impact on downstream analysis (9). Standard “normalization”
pipelines include scaling using sample-specific size factors, log
transformation to reduce skewness, and feature filtering before
PCA. The selection of a particular normalization routine will
itself embed assumptions about the underlying distribution of
the data. Inappropriate preprocessing may introduce artifacts
that impact the ability to perform further preprocessing (e.g.,
alignment and integration of batches of sc data both within and
between studies) and downstream biological analyses [e.g., cell
type identification, classification, and differential gene expression
(1, 8, 9)].

Depending upon the analysis method selected, objective
defined, and the dataset itself, different approaches to
preprocessing may be appropriate; various data scaling,
centering, standardization, and transformation (Figure 1)
approaches can be applied. Frequently these terms are used
interchangeably even though they represent different data
manipulations (11, 12). Often the goal of preprocessing steps is
to generate data that meet the linearity, homoscedasticity (that
the points have the same scatter, i.e., there is no relationship
between mean and variance), and normality assumptions that
are required for most parametric statistical methods, including
linear regression. A recent review of metabolomics data includes
an extensive review of scaling and transformation approaches on
sparse data (13).

• Scaling adjusts the range of the data, by dividing by a value.
There are two broad subclasses of scaling factors: sizemeasures
(e.g., mean or library size) and data dispersion measures (e.g.,
standard deviation). Unit or unit variance scaling uses the
standard deviation as the scaling factor, such that points have a
standard deviation of one and therefore the data are analyzed
on the basis of correlations instead of covariances. If data
are scaled by dividing by the standard deviation, then the
correlation is equal to the covariance of those two variables,
since the Pearson correlation coefficient of two variables is
equal to dividing the covariance of these variables by the
product of their standard deviations. Scaling by size measures
is important when integrating multiple datasets in cases where
the range of values and means of the data differ substantially.

• Centering is subtracting the mean of a set of points from each
data point so that the new mean is 0. The scale does not
change, one unit is still one unit. In Figure 1, we see centering
produces data with a mean at zero, but the standard deviation
is unchanged

• Standardization includes centering and scaling. A Z-score
standardization is subtracting the mean and dividing by the
standard deviation of all points. A one-unit difference after this
adjustment now indicates a one-standard deviation difference.
Note whilst it changes the range of the data it may not affect the
distribution, and may require an additional transformation

• Transformations, including log transformations (log2 or log10)
or log with pseudocount (e.g., log +1), are commonly
applied to sc data that increase proportionally (% or fold
change) rather than linearly (8). A log transform or power
transform may make skewed data look more symmetric or
Gaussian (normally distributed in a bell-curve shape) and
correct for heteroscedasticity (unequal scatter of points, where
variance differs with mean). Recent studies reported that
log2+1 transformation may distort data, introducing false
variability in dimension reduction and impacting downstream
analysis (8, 14, 15). Given that heteroscedasticity in omics
data is both multiplicative and additive, generalized log
variance-stabilizing transformations such as arcsinh (asinh)
of scRNA-seq data (16, 17) and CyToF proteomic data
(18, 19) are recommended. Rank-based inverse normal
transformation has also been used to rescale scRNAseq gene
expression (20).

Frontiers in Oncology | www.frontiersin.org 2 June 2020 | Volume 10 | Article 97397

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hsu and Culhane Integrative Analysis of Single Cell Data

FIGURE 1 | Common data preprocessing steps include scaling, centering, standardization, and transformation. Graphical examples of these preprocessing routines

are applied to two datasets (1) “toy data” with a mean and standard deviation (SD) of 1.5 generated for purposes of illustration, and (2) the 10X raw counts matrix in

the scMix benchmarking dataset used in Figure 2 (10).
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• Normalization transforms the data points so that their
distribution resembles a normal, also called Gaussian,
distribution. In a normal distribution (i.e., the classic bell
curve) points are distributed symmetrically around the mean,
most observations are close to the mean, and the median and
mean are the same. Depending upon the distribution of the
original dataset, this may be achieved by a log transformation,
or may require more extensive preprocessing. Two recent
articles have proposed analysis of Pearson residuals rather
than log normalized counts (8, 14). In bioinformatics and
computational fields, this term may also refer to size and/or
range scaling transformation whichmay not produce a normal
distribution (21).

Feature selection, for instance restricting analysis to over-
dispersed genes which are expected to capture a disproportionate
amount of the variance in the data, is included in many analysis
pipelines to reduce the computation time (16, 22). Furthermore,
selecting genes with high biological variability, to exclude many
genes with low biological signal and high numbers of zeros, may
increase the signal to noise ratio in dimension reduction.

Dimension Reduction
Data dimension reduction is indispensable in single cell data
analyses because it facilitates exploratory data analysis and
visualization, and is an essential step in many downstream
analysis including cell clustering (23, 24), cell-type identification,
cell trajectory, lineage reconstruction, and trajectory inference
(25–27). It is also a critical first step in many algorithms that align
and integrate sc datasets (11, 22, 28).

Dimension reduction transforms the data to a new coordinate
system (i.e., a low-dimensional shared latent space) such that
the greatest variance can be identified and distinguished from
background noise, or less informative variance. The output
is a set of embeddings for each data point which encode
their location in the low-dimensional shared latent space.
It is frequently achieved using matrix factorization, a class
of unsupervised techniques that provide a set of principled
approaches to parsimoniously reveal the low-dimensional
structure while preserving as much information as possible from
the original data.

Principal component analysis (PCA) is arguably the oldest,
fastest, and the most commonly used matrix factorization
approach (29). PCA is a deterministic algorithm that seeks
linear combinations of the variables that explain the variance
in the data and ranks these such that the first component
explains most of the variance or “strongest” pattern in the data.
PCA uses a Gaussian likelihood and is best applied to data
that are approximately normally distributed. Whilst it is not
recommended to be applied to highly skewed data (Figure 1),
nonetheless, in a recent systematic analysis of 18 linear and
non-linear dimension reduction approaches, PCA and other
classical linear methods performed surprisingly well in both
clustering and lineage inference analysis when assessed on 30
scRNA-seq datasets (30). Linear (straight-line) analysis methods
including PCA, independent component analysis (ICA), factor
analysis (FA) ranked best in clustering. PCA, FA, non-negative
matrix factorization [NMF, (31, 32)], and uniform manifold

approximation and projection [UMAP, (33)] ranked top in
lineage inference analysis (30). We compare ICA and NMF
matrix factorization in a recent review (31).

Dimension reduction methods optimized for count data
that apply a better-fitting likelihood model (e.g., Poisson or
negative binomial) are promising for addressing the skewed
distribution of sc count data (8, 14). However, glmPCA (8),
Poisson factorization (34–36), and probabilistic count matrix
factorization [pCMF, (37)], as well as methods designed to model
zero-inflated sparse data, including ZIFA and ZINB-WaVE (38,
39) did not outperform PCA across the full range of analyses
and evaluations performed in the study Sun et al. (30). While
there are particular settings where these methods may be most
appropriate, they are not necessarily appropriate as “general-
purpose” approaches. The high computational cost and long
run time make many of these models difficult to integrate into
multi-step bioinformatics pipelines.

Non-linear dimension reduction methods can identify
variance in subsets of features by fitting local linear maps
on subsets of points. Non-linear methods applied to sc
data include diffusion maps (40), locally linear embedding,
isoMap, kernel adaptations of linear methods, uniform manifold
approximation and projection (UMAP) (41), and t-distributed
stochastic neighbor embedding [tSNE, (42)]. However, similar
to the methods that apply non-Gaussian likelihoods, non-
linear dimension reduction methods are often computationally
expensive and since they are not deterministic may produce
different embeddings when re-applied to the same dataset.
To improve computational tractability, PCA is frequently used
as a preprocessing step prior to non-linear dimensionality
reduction approaches including t-distributed stochastic neighbor
embedding [tSNE, (43)] and UMAP (33). Although not required
to run UMAP, in practice, it can be applied to accelerate
computation time by significantly reducing dimensionality and
noise while preserving underlying latent structure.

In this review, we focus on PCA because of its popularity,
performance, and widespread use. PCA is a central step in
many sc analysis algorithms and pipelines. When used with
sparse-matrix representations, it can easily scale to large datasets.
Excellent general tips for dimension reduction have been
described (44), so we will focus on considerations and limitations
when applying dimension reduction to sc data, including a step-
by-step explanation of how PCA works, especially when applied
to integrative sc analysis (Figure 2A).

The Impact of Data Preprocessing on Dimension

Reduction
There are two types of PCA, which differ in data centering and
scaling prior to matrix decomposition. PCA of a covariance
matrix or a correlation matrix is achieved by applying matrix
factorization to a centered but unscaled matrix, or a centered
and scaled matrix, respectively (Figure 2A, Step 2). The latter
is the most popular form of PCA. Linear regression using non-
linear iterative partial least-squares (NIPALS), eigen analysis,
or singular value decomposition (SVD) are a few of the many
ways to factorize or decompose a matrix. SVD is a basic matrix
operation, and fast approximations of SVD, including IRLBA,
are commonly applied to sc data [extensively reviewed by (45)].
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FIGURE 2 | Matrix Factorization of sc data: (A) schematic diagram of a PCA or CCA workflow, includes: (1) filtering of datasets to intersecting genes; (2) scaling,

transformation, and normalization of individual and joint count matrices; (3) concatenating matrices and applying a matrix factorization, usually singular value

decomposition (SVD); and (4) visualizing results. SVD is a matrix operation that finds for a given input matrix the left singular vectors (U), the right singular vectors (V),

and the singular values (D), such that the product of U and V with their respective transpose matrices is the identity matrix. Each singular vector is orthogonal to the

others, and they are ordered such that the first component explains the greatest variance, and each subsequent component explains less than the preceding. (B) The

first two principal components of SVD performed on counts and log-transformed counts of the scMix benchmarking data (10), comprising 3 cell lines (HCC827,

H1975, and H2228), that were unprocessed, centered, and centered and scaled, to reflect SVD, covariance-based and correlation-based PCA, respectively. Results

from covariance-based and correlation-based PCA applied to log-transformed data are similarly effective, showing moderate data integration and separation by cell

type but an arch effect is visible on PC1 and PC2 in SVD of the raw counts. (C) Covariance-based and correlation-based PCA of log-transformed data, colored by

sequencing depth, show that unadjusted differences in sequencing depth limit integration, forming a gradient across each cluster. (D) The first three principal

components from Canonical Correlation Analysis (CCA) of scMix data. In both raw counts and log-transformed data, PC1 provides poor separation by cell type and

batch integration. The plot of PC2 by PC3 from CCA on log-transformed data show reasonable clustering by cell line, though exhibit poor batch integration; in

contrast, PC2 by PC3 plot from CCA on raw data shows better batch integration and poorer separation by cell type.
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SVD factors an input matrix into three matrices U, D, and
V, as illustrated schematically in Figure 2A (46) (R code to
perform PCA via both eigen analysis and SVD are provided in
Supplementary Methods). The maximum number of principal
components or rank of the analysis is the number of rows
or columns of the matrix (whichever is lower, n-1, or p-1),
though typically 30 or fewer components are examined in most
scRNA-seq pipelines (22). Selection of the correct number of
components is non-trivial and most commonly achieved by
heuristic approaches. To understand the distribution of variance
explained by each component, scree-plots can also be helpful
visual tool (47, 48) and permutations based approaches are
recommended (49, 50).

Figure 2B displays SVD of raw count or log2 transformed
count matrices that were (1) unprocessed data (top row); (2)
centered by subtracting column means (middle row); and (3)
scaled and centered to reproduce SVD. (2) and (3) show PCA
of a covariance matrix (princomp in R), and PCA of a correlation
matrix (prcomp in R), respectively (Figure 2B). These are applied
to a small, well-described benchmarking dataset (10), comprising
scRNA-seq measurements of a three cell line mixture on three
technological platforms (10X, Dropseq, and CELseq2). Both
forms of PCA had greater success in finding structure in the
data as compared to SVD alone. However, clusters of cell lines
could only be distinguished in data that were log transformed.
Moderate cross platform integration was observed in data that
were centered, or centered and scaled (equivalent of PCA of a
covariance or correlation matrix, respectively). Nonetheless, as
illustrated in Figure 2C, we observe that systematic differences
in sequencing depth between the three platforms still creates a
gradient across each cluster, preventing full integration. Whilst
this analysis was performed on all variables (genes), we and others
have found that excluding genes with low variability and high
numbers of zeros prior to dimensionality reduction may increase
the signal to noise ratio (12, 48, 51).

The Horseshoe or Arch Effect
PCA is optimized for continuous, normally distributed data and
is suboptimal when applied to sparse data with many zero counts.
The arch or horseshoe is a common pitfall and has been described
in detail in the literature (44, 52, 53). This distortion results
from the presence of a gradient or sequential latent ordering
in the data [Tutorial by (54)]. In the top row of Figure 2B

all of the cell lines on the first component (PC1) are on the
same side of the origin, forming a classical horseshoe pattern,
characterized by a distinctive “arched” shape, with points mostly
on one side of the origin and folding back on itself in one of the
dimensions. This indicates that additional data preprocessing is
required; cell lines cannot be distinguished, and the data are not
integrated across batches. In the top right plot of Figure 2Bwhich
shows SVD on unprocessed log counts, the first 2 PCs appear
correlated, but are by definition orthogonal—their dot product
is 0. Orthogonal vectors are uncorrelated only when at least one
of them has mean 0. In contrast, when data are centered (e.g.,
middle and bottom row of Figure 2B), these artifacts are gone. It
is vital that such arch effects are identified, especially when PCA
forms part of a computational workflow that extracts the first n
principal components without inspection. As seen in Figure 2,

preprocessing and data normalization can remove arch artifacts
and we refer the reader to excellent recent reviews on the subject
(44, 52–54).

Examining PC plots can illuminate issues beyond the arch
effect, in this case for instance, showing that the 10X data
are located further from the origin on PC1 and PC2 as a
result of difference in sequencing depth between platforms
(Figures 2B,C). This can be corrected for by scaling the size
factors by dataset to account for these systematic differences prior
to log-normalization (55).

Integrating Two or More Datasets With

K-table Matrix Factorization
Matrix factorization approaches have been highly effective and
widely applied to removing batch effects in bulk omics data
(56, 57). Whilst dimensionality reduction methods like PCA can
discover batch effects (1, 11, 28), and could also be applied to
remove within or even between batch effects in sc data, it is more
common to explicitly define the blocks, groups, or datasets to
be integrated and apply matrix factorization that is designed to
extract correlated structure between groups. Emerging sc data
integration and cross-study batch correction methods frequently
use PCA or joint matrix decompositions as a first step.

Matrix factorization approaches that integratemultiple groups
or matrices with matched rows or columns, often called K-
table, multi-block component analysis or tensor decompositions
(46), have been applied to both bulk and scRNA-seq data
integration (46). The simplest K-table approach is possibly
Procrustean analysis (58, 59). Procrustes was a figure from Greek
mythology who was famous for cutting limbs or stretching
unknowing passers-by such that they fit into his bed, and
similarly, Procrustean analysis involves rotation or reduction of a
component from one PCA to best fit a second PCA. Several other
matrix factorization approaches for K-table exist (46).

Arguably the most popular K-table approach applied to omics
data is canonical correlation analysis [CCA, (60, 61)], which
maximizes the correlation between components, or canonical
variables of each dataset, and has been widely applied to
integration of bulk omics data [reviewed by (46, 62)]. Classical
CCA requires more observations than features, and therefore
sparse implementations that include feature selection are used in
the analysis of bulk omics data (63, 64). CCA and adaptations
of CCA have been applied to integrate scRNA-seq including
the cross-study integration of stimulated and resting human
peripheral blood mononuclear cells (PBMCs); cross-platform
integration of mouse hematopoietic progenitors scRNA-seq data;
and heterogeneous case-control cell populations after drug
exposure (16, 22). Seurat 3 uses CCA with anchors to align
datasets that are extracted using mutual nearest neighbors on
the CCA subspace (65). Harmony uses PCA as a first step (66).
PCA or CCA is the first step in scAlign, a neural-network
based method for pairwise or data to references, alignment of
single cell data (67) which was reported to outperform other
single cell alignment methods (CCA in Seurat, scVI, MNN
scanorama, scmap, MINT, and scMerge). Non-linear matrix
factorization approaches for integration of datasets include joint
NMF [LIGER, (68)] but in a recent comparative study this was
reported to be computationally slow and may overlay samples
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of little biological resemblance compared to the other methods
(69). A benchmark comparison of 14 methods for integration of
scRNA-seq datasets, on datasets from different technologies with
identical cell types, non-identical cell types, multiple batches, big
data, and simulated data revealed that harmony, LIGER, and
Seurat 3 CCA are most performant (65).

Other matrix decomposition approaches, including multiple
co-inertia analysis (48, 70), multiple factor analysis (71, 72),
and consensus PCA (73–75), maximize a covariance or squared
covariance criterion and are not limited by a requirement
for more observations than features. These have been applied
to bulk omics data and clustering, for example Meng et al.,
applied Westerhuis’s modified implementation of consensus
PCA to integrate methylation, proteomic and genomics data,
reporting it was performant and faster that iCluster/iCluster+
(75). Dimension reduction methods for both single and K-table
analysis, including a summary of the mathematical formulae
and overview of available software packages for each mode of
analysis, have been recently reviewed (46). Of note, there is also
a recently described generalized framework to easily modulate
between covariance and correlation-optimization in integrative
matrix factorization (62, 76).

Horseshoes in CCA
Similar to PCA, a problematic arch effect is seen on PC1 and
PC2 (Figure 2D) when CCA is applied to align and integrate raw
counts or log counts of scRNA-seq measurements of three cell
lines that were obtained on three technological platforms: 10X,
Dropseq, and CELseq2 (10). The raw data had more platform
overlap, and the log-transformed had less overlap in cell types
in PC2 and PC3 (Figure 2D). These data demonstrate that, if
CCA is used as a first step in a pipeline, it should include a check
for the presence of such artifacts. For example, upon examining
Figure 2D, one could exclude PC1, since CCA integrates the data
across platforms in PC2 and PC3.

Scaling of Datasets in CCA
Simultaneous integration of multiple matrices is more complex
than integrative analysis of a single dataset because each dataset
may have different numbers of observations (cells), internal
structure, and variance. In this CCA (Figure 2D) vignette the
10X dataset exhibited less correlated structure with the Dropseq
and CELseq2 datasets, which had lower sequencing depth
(Figure 2C). Therefore, in K-table matrix decomposition two
levels of preprocessing are recommended. First, each individual
dataset is normalized, centered, and scaled. Secondly, datasets
are scaled by cross-dataset size factors (55), weighted to inflate
or deflate the contribution of individual datasets, such as scaling
by the square root of their total inertia, the percent variance on
the first principal component, sample size, or another measure of
data quality or expected contribution [reviewed by (46)].

Key Takeaways
When applying matrix factorization methods including PCA,
it is recommended to consider the impact of scaling, log-
transforming, standardization, and normalization. Common
data challenges, and tips to address them, include:

1. Preprocessing of data. Consider each step in the pipeline
and how it transforms the data. If necessary, consider
preprocessing the data yourself. Visualize data after
intermediate steps to ensure data are processed as expected,
and to diagnose any issues that may arise.

2. Heteroscedasticity. Whilst widely used, log2
transformation of expression values combined with
pseudocounts may not be appropriate, consider using a
variance-stabilizing transformation.

3. Arch effect in PCA. Examine PCs if weights are not centered
around the origin with negative and positive scores, to check
if there is an arch artifact. This can be mitigated by scaling
and/or normalization.

4. Systematic differences in sequencing depth. When working
with data from multiple batches, we found that the
multiBatchNorm function from the batchelor R/Bioconductor
package corrected for the differences in sequencing depth.

5. Uncertainty around ground truth. Test methods using a
well-characterized benchmarking dataset, if possible. The
CellBench R/Bioconductor package provides access to several
datasets, including the scmix dataset used in Figure 2 (77).

SUMMARY

Single cell omics data are expanding our understanding of
tumor heterogeneity, the tumor microenvironment, and
tumor immunology. Algorithms for cell clustering, cell type
identification, and cell trajectory analysis rely on dimension
reduction to achieve computationally tractable solutions.
The sparsity, noise, and high dimensionality of these data
present unique challenges and underscore the importance of
dimension reduction in sc analysis. PCA is widely used and
popular for its speed, scalability, and performance, though
it may not be the most optimal method for sc data. Matrix
factorization approaches optimized for count matrices or
distances matrices have been described [reviewed by (38)],
and it is likely that more performant data preprocessing,
scaling, and transformation approaches will continue to be
developed. These methods will improve the performance
of dimension reduction approaches in sc data integration
and analysis.

RESOURCES

We include below a short list of single cell analysis resources,
vignettes, and reference materials

https://osca.bioconductor.org/
https://github.com/seandavi/awesome-single-cell
https://satijalab.org/seurat/
https://hemberg-lab.github.io/scRNA.seq.course/
https://github.com/SingleCellTranscriptomics

SUPPLEMENTAL MATERIAL

R Code to reproduce these figures which describes different
implementation of SVD and PCA is publicly available at https://
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github.com/aedin/Frontiers_Supplement/. It includes a code
to generate PCA, computed by SVD, eigenanalysis and PCA
using R packages princomp, prcomp, ade4, FactoMineR.
In each case, the relationship between these methods
is described.
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Immunotherapy with checkpoint blockers (ICBs), aimed at unleashing the immune

response toward tumor cells, has shown a great improvement in overall patient survival

compared to standard therapy, but only in a subset of patients. While a number of

recent studies have significantly improved our understanding of mechanisms playing an

important role in the tumor microenvironment (TME), we still have an incomplete view

of how the TME works as a whole. This hampers our ability to effectively predict the

large heterogeneity of patients’ response to ICBs. Systems approaches could overcome

this limitation by adopting a holistic perspective to analyze the complexity of tumors.

In this Mini Review, we focus on how an integrative view of the increasingly available

multi-omics experimental data and computational approaches enables the definition of

new systems-based predictive biomarkers. In particular, we will focus on three facets

of the TME toward the definition of new systems biomarkers. First, we will review how

different types of immune cells influence the efficacy of ICBs, not only in terms of their

quantification, but also considering their localization and functional state. Second, we will

focus on how different cells in the TME interact, analyzing how inter- and intra-cellular

networks play an important role in shaping the immune response and are responsible for

resistance to immunotherapy. Finally, we will describe the potential of looking at these

networks as dynamic systems and how mathematical models can be used to study the

rewiring of the complex interactions taking place in the TME.

Keywords: tumor microenvironment, precision immuno-oncology, multi-omics profiling, systems biology,

predictive biomarkers, cancer signaling networks, immune checkpoint blockers

A CHANGE IN THE LANDSCAPE OF BIOMARKERS DISCOVERY

Tumor cells are able to activate several mechanisms to evade the immune response by disguising
themselves as “self ” cells. Binding to inhibitory checkpoint molecules (i.e., immune checkpoints)
they can block antitumor activities of the immune system. Immunotherapy with immune
checkpoint blockers (ICBs) uses antibodies to target immune checkpoints, such as PD1, PD-L1, and
CTLA-4, unleashing the immune response. In clinical trials, ICB therapy has been shown to achieve
durable therapeutic response and to increase patient survival in different cancer types, although
still a small number of ICBs are FDA-approved (1, 2). Even if clinically approved, ICB therapy is

105

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01027
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01027&domain=pdf&date_stamp=2020-06-24
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f.eduati@tue.nl
https://doi.org/10.3389/fonc.2020.01027
https://www.frontiersin.org/articles/10.3389/fonc.2020.01027/full
http://loop.frontiersin.org/people/903218/overview
http://loop.frontiersin.org/people/587055/overview


Lapuente-Santana and Eduati Systems Biomarkers for Immune Checkpoint Blockers

effective for a small subset of patients. Given the potential
immunological toxicity (3, 4) and the elevated costs
(>US$100,000 per patient per year) (5) associated with
ICBs, it is of paramount importance to be able to predict which
patients will likely respond to the therapy, in order to administer
the optimal treatment based on biomarkers.

The investigation of mechanisms supporting immune
resistance has provided a great opportunity for biomarker
discovery of patient response to ICBs (Figure 1). Two biomarkers
have been clinically approved for PD-1/PD-L1 blockade therapy:
the first is immunohistochemistry (IHC) staining of PD-L1
in non-small-cell lung cancer (NSCLC), melanoma, renal cell
carcinoma (RCC), urothelial cancer, and triple-negative breast
cancer (TNBC) (6); and the second is high microsatellite
instability/defective mismatch repair (MSI-H/dMMR) regardless
of tumor type (7, 8). Other emerging predictive biomarkers such
as tumor mutational burden (TMB) (9, 10), signatures of a T
cell inflamed tumor microenvironment (TME) either alone (10)
or in combination (11), and neoantigen load (12–14) are still
undergoing clinical trials. In addition, T cell receptor (TCR)
diversity has been used as a biomarker to monitor the clonal
expansion of T cells in breast cancer, glioma, cervical cancer, and
leukemia/lymphoma (15–18). Further efforts both to exploit the
utility of these biomarkers and to search for additional ones are
still ongoing. For a complete review of these biomarkers and in
which tumors they work, we refer to Havel et al. (19).

Despite being promising, these biomarkers also present
some limitations. For instance, IHC enables measuring PD-
L1 expressed on tumor cells, however the expression of this
biomarker fluctuates over time and varies between different
tumor sites. This variability undermines the ability to evaluate
PD-1/PD-L1 therapies effectiveness based on IHC, as reviewed
in Topalian et al. (20) and Camidge et al. (21). Another
example is TMB, which is known to correlate imperfectly
with clinical response (12, 13, 22). Neoantigen burden should
partially overcome this issue, however most computational tools
fail to estimate true neoantigens (19, 20, 23), and additional
features should be considered to better determine neoantigen
immunogenicity as reviewed in Finotello et al. (24).

Above-mentioned examples shed light upon the conceptual
problem of looking only at individual components of the TME.
While the characterization of different parts playing a role in
the interaction between tumor and immune system has been
essential to elucidate the most important actionable mechanisms,
further research is required to define biomarkers harnessing a
more coordinated joint action of these mechanisms. Predictive
biomarkers for immunotherapy with ICBs have been extensively
reviewed previously (19, 20, 23, 25). In this Mini Review we

Abbreviations: CTLA-4, cytotoxic T lymphocyte antigen 4; DC, dendritic

cell; ICB, immune checkpoint blocker; IFNγ , interferon gamma; IHC,

immunohistochemistry; MMR, DNAmismatch repair; MSI-H, high microsatellite

instability; NOS2, nitric oxide synthase 2; NSCLC, non-small-cell lung cancer;

PD-L1, programmed cell death-ligand 1; PD-1, programmed cell death protein

1; RCC, renal cell carcinoma; RNA-seq, RNA sequencing; scRNA-seq, single-cell

RNA sequencing; TCGA, the cancer genome atlas; TCR, T cell receptor; TMB,

tumor mutational burden; TME, tumor microenvironment; TNBC, triple-negative

breast cancer; TNF, tumor necrosis factor; Treg, regulatory T cell.

focus on how a holistic profiling of the TME can provide new
opportunities for identifying systems-based biomarkers built on
existing synergies between the different individual components
of the TME. Such a shift toward multifaceted strategies has
been favored by increasingly available multi-omics data from
bulk populations, individual cells, and imaging technologies
(26), that can be integrated using computational approaches.
In the following sections we will describe how biomarkers can
be derived by considering three increasing levels of complexity.
The first is the cellular component, focusing on the immune
contexture of tumors, such as immune cells quantification,
functionality, and localization. The second is the network of
communication between and within cells of the TME. Finally, we
will elaborate on how mathematical models can be used to take
the dynamic nature of these networks into account.

THE ROLE OF THE IMMUNE
CONTEXTURE ON ICB EFFICACY

It is well-known that different types of immune cells can play a
different role in the response to ICBs (27). For example, while the
presence of CD8+ T cells within the TME is a good biomarker
of ICBs efficacy, a high abundance of regulatory T (Treg) cells
is generally associated with poor prognosis. Different tools have
been developed to quantify tumor-infiltrating immune cells from
bulk (RNA-seq) and single-cell (scRNA-seq) RNA sequencing
measurements, as extensively reviewed in Finotello and Eduati
(26) and Finotello and Trajanoski (28).

Apart from quantification of immune cells, their spatial
localization also plays a pivotal role in the response to
immunotherapy (29). For instance, CD8+ T cells not only need
to be present, but also to be infiltrated (hot tumor) for the
ICB therapy to work. In fact, pure quantification of CD8+
T cells is not always associated with favorable prognosis (30).
Imaging techniques can be used to explore the spatial patterns of
immune infiltration. A notable example of a biomarker assessing
through IHC, both the abundance and the location (tumor
center and invasive margin) of two lymphocyte populations
(CD3+ and CD8+ T cells) is the immunoscore (31), that
was shown to accurately predict patient survival in colorectal
cancer patients (32). More recently, spatial information of
CD8+ T cells from IHC was integrated with transcriptomics
data to study the effect of lymphocyte infiltration in patients
with TNBC, providing predictive biomarkers of ICBs response
(33). Automatic approaches for image analysis could reveal
useful in the future for high-throughput identification of spatial
biomarkers. A first attempt in this direction was the development
of tumor infiltrating lymphocytes maps by using deep learning
on images from the cancer genome atlas (TCGA) (34).

Another important factor that affects patients’ response to
ICBs is the functional state of the different immune cells (35).
Dysfunctional states of T cells can be characterized from bulk
and single-cell RNA-seq (36–38) and epigenetic profiling (39–
41). ICBs aim at rescuing dysfunctional T cells, therefore the
investigation of their functional state can inform on ICBs therapy
success and limitations (36–39, 41). Depending on the type of
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A

B

FIGURE 1 | (A) Biomarkers can help to select patients that are likely to respond to immune checkpoint blockers (ICBs), leaning toward personalized

immuno-oncology. (B) Examples of possible mechanisms that can inform on response to ICBs. (a) Binding of PD-L1 to PD-1 transmits an inhibitory signal that

reduces the proliferation of T cells and can induce apoptosis. (b) Genetic alterations in MMR proteins produce a large number of mutations leading to a large number

of mutations that generate neoantigens. (c) The number of non-synonymous single nucleotide variants in a tumor, known as the tumor mutational load, may affect the

generation of neoantigens influencing the T cell response. (d) Quantification of different immune cell types offers a new opportunity to assess treatment efficacy. (e)

Immune cells can be in a dysfunctional state, therefore promoting tumor immune escape. (f) The degree of T cell infiltration can affect ICBs effectiveness. (g) Signaling

pathways are responsible for the correct functioning of the cells. Cancer is caused by deregulations in these cellular signaling pathways, ultimately changing the cell

phenotype. (h) There are a great number of pathways and cross-talks involved in the communication between tumor and immune cells. (i) Both, all sorts of TCR

sequences and the richness of each specific TCR sequence, can deal with the wide variety of neoantigens expressed by tumor cells. As a result, more specific T cell

clones are present, and therefore ready to mount an effective T cell response.

stimulatory signal, macrophages (42, 43), and B cells (44, 45)
can develop into functional subsets that have either positive
or negative effects on tumors. Another example are dendritic
cells (DCs), that normally control cancer antigen presentation,
priming and activation of T cell responses, however the TME
can compromise their ability to stimulate the immune response
(46, 47). Certain computational tools for cell-type quantification
can also unmask the phenotypic state of cell subpopulations in
the TME by inferring the transcriptomics profiles of individual
cells (48, 49). A promising research direction for biomarkers
discovery is also given by new technologies that allow generation

of omics data from tissue slides preserving cell spatial identity
(50, 51). These approaches would result in combined localization
and characterization of the cells in the TME.

Analysis on the immune infiltrate quantification,
functionality, and localization can help both to explain
the diversity of the tumor immune milieu and develop
informative biomarkers for ICBs (27, 52, 53). Pointing in this
direction, different efforts have recently explored the use of bulk
transcriptomics data to derive more complex immune-related
scores to assess the likelihood of a patient to respond to ICBs
(38, 54–63).
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INTRA- AND INTER-CELLULAR
NETWORKS ORCHESTRATE THE IMMUNE
RESPONSE

The functional state of cells in the TME is defined by a complex
system of communication between molecules within the cells
(intra-cellular networks) and among different cells (inter-cellular
networks). Looking at intra- and inter-cellular networks can
provide a more holistic perspective of the TME and inform a
new class of biomarkers for immunotherapy and its potential
combination with other targeted therapies (64).

Intra-cellular signaling pathways play a part in shaping
the interaction with the immune system [(65, 66); Figure 2].
Abnormalities in tumor-intrinsic signaling, involving oncogenes
and tumor suppressor genes, have been associated with
mechanisms of inherent immune resistance (67). Examples are
PTEN loss (68) or EGFR gain of function (69), both causing
PI3K-Akt pathway activation and leading to over-expression of
PD-L1 and consequent immunoresistance. Due to the complexity
of signaling pathways, with numerous cross-talks and feedback
loops, the adoption of individual oncogenic drivers as biomarkers
is not expected to be effective in most cases (20). In fact,
PD-L1 signal is directly regulated by numerous oncogenic
pathways such as Ras, mTOR, EGFR, MEK, ERK, and MAPK
(70). Besides pathways regulating immune checkpoints, other
signaling cross-talks control the immune response from different
perspectives, like inactivation of TP53 or activation of β-catenin
pathway, both reducing chemokine production by tumor cells
and thereby reducing recruitment of immune cells into the
TME (71, 72).

In addition, cancer cells receive signals from other cells
in the TME through ligand-receptor interactions. These inter-
cellular communications lead to changes in the phenotype of
the regulated cells thus playing an important role in both
progression and prognosis of cancer (73, 74). An example is
the response elicited on cancer cells by two cytokines (TNF and
IFNγ ) produced by activated T cells. These cytokines induce
PD-L1 expression through JAK-STAT and NF-kB signaling,
inducting acquired resistance to the immune response (75, 76).
Another study identified a relationship between high expression
of NOS2 and prolonged IFN signaling in tumors resistant to
PD-1 blockade (77).

While collections of intra- (78) and inter-cellular (79)
interactions can be derived from literature and databases,
additional data are required to characterize the networks
for each patient or group of patients. Transcriptomics and
proteomics data can provide the basis to study intra- and
inter-cellular signaling networks. Imaging data can also be
integrated to improve our understanding on spatial localization
of interacting cells. Computational methods have been developed
to infer integrated inter- and intra-cellular networks from bulk
(80, 81) and single-cell (81, 82) RNA-seq data. These tools
could be exploited to derive biomarkers for immunotherapy
by studying the functional effect of cell-cell communication.
In a recent study, a curated database of ligand-receptor
interactions (79) was integrated with gene expression data to

deconvolute the transcriptional profile of cancer and stromal
cells and infer cross-talks in the TME (83). Interestingly,
the authors show that for different cancer types, PD-L1
expression is higher on cancer or stromal cells which nicely
correlates with the general responsiveness to immunotherapy.
Further research is required to assess if this holds also for
individual patients, making it potentially a more effective
biomarker than bulk PD-L1 expression. In another recent
publication (84), researchers performed an extensive literature
curation to derive a comprehensive signaling network of
innate immune response in cancer, including cell type-specific
signaling in macrophages, DCs, myeloid-derived suppressor
cells, and natural killer cells. Such network was then integrated
with scRNAseq data from macrophages and natural killer
cells in melanoma to study the heterogeneity of innate
immune cell types and could potentially be used to predict
patient survival and response to immunotherapies. Finally,
Worzfeld et al. combined parallel bulk transcriptomics and
proteomics data on tumor cell spheroids, tumor-associated
T cells and macrophages to derive inter-cellular signaling
networks in the ovarian cancer microenvironment (85). Such
networks included several immune checkpoint regulators and
appeared to have potential clinical relevance. Overall, these
studies have demonstrated the enormous benefit that holistic
approaches combining complex multicellular networks can bring
into the immuno-oncology field, and we expect that in the
forthcoming future more research efforts will be spent in this
direction. The recent developments of 3D cell culture models
resembling the TME, are expected to be a powerful tool
for further in vitro and ex vivo investigation of intra-cellular
communication, and to study their effect on the response to
ICBs (86).

THE POTENTIAL OF LOOKING AT THE
DYNAMICITY AND PLASTICITY OF THE
TME

It is well-known that the cellular functional state changes
dynamically in response to environmental changes and
perturbations such as drug treatment (87, 88), calling for
identification of the dynamic properties of the networks. The
ideal data for dynamic functional characterization of the system’s
response are obtained upon perturbation (89). Functional
screening of the effect of cancer drugs has been so far focused
on cancer cell lines. While cell lines are a debatable model
system, they proved to be a valuable tool to explore novel
biomarkers of drug response (90, 91). High-throughput drug
screening studies are now also being increasingly performed on
organoids (92) or other 3D experimental models (86), which are
more physiological human cancer models of the TME. These
efforts open new ways for pre-clinical investigation of the effect
of immunotherapy. Finally, more recent technologies allow
screening also of patient biopsies without need for culturing
steps (93–95) paving the way for functional characterization
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FIGURE 2 | Comprehensive inspection of the tumor microenvironment (TME) from multiple angles. This illustration shows how systems medicine approaches are key

to improving our understanding of the mechanisms of resistance to immunotherapies with checkpoint blockers (ICBs). Combining multi-omics data and prior

knowledge information on inter- and intra-cellular pathways using mathematical models allows encompassing the complexity of the TME paving the way for the

discovery of systems-based biomarkers of the response to ICBs.

of ex vivo tumor samples potentially improving personalized
cancer treatment.

To capture the functional context of the immune response,
statistical, and mathematical approaches are developing into
more compendious methods that integrate multi-omics data
and prior knowledge on network structure (Figure 2). While
mathematical models do not fall into the standard definition
of biomarkers, they can provide predictions of response to
immunotherapy. Additionally they can be used to define dynamic
biomarkers based on properties of the modeled system, as
opposed to static biomarkers that only consider the initial
conditions of the system (88).

Dynamic mathematical models can be used to study intra-
cellular networks of the different cell types populating the
TME (96). To characterize these networks at the patient-specific
level, models of signaling pathways in cancer cells have been
trained from perturbation experiments (97, 98), gene expression
data (99), or integrating multi-omics data (100). The resulting
parameters corresponding to these personalized models can be
relevant biomarkers of clinical outcome (99–101). Mathematical
models have also been used to study intra-cellular signaling in
T cells. This includes the investigation of how PD-1 leads to
deactivation of the T cell receptor signaling (102) or mechanistic
understanding of T cell exhaustion (103). PD-1 is one of the main
targets of ICB, and exhausted T cells have a higher number of

targetable checkpoint proteins like PD-1 and CTLA-4, therefore
the investigation of these aspects could be relevant to identify
possible biomarkers.

More studies are now focusing on mathematical models
incorporating inter-cellular interactions to better capture the
complexity of the TME. Agent-based models can be used
to simulate the interactions between cells in the tumor
microenvironment seen as a 2D or a 3D grid (104). Each cell is
seen as an agent that can perform different tasks with a certain
probability (e.g., cells can non-proliferate, divide, or die). Since
the immune response can be seen as a probabilistic outcome
of a complex system (88), agent-based models are an adequate
mathematical approximation to capture this stochasticity. These
models can be refined using a multitude of data types and
used to simulate the effect of immunotherapy (105, 106),
providing a variety of possible outcomes given the same initial
conditions that can be interpreted as probability of success. It
has been shown that tumor-bearing inbredmice, which have only
minimal differences, can respond differently to immunotherapy
(88), therefore having models that can incorporate stochasticity
provides an interesting approximation of the in vivo situation.
Another approach to model cell-cell communication is by
using response-time modeling (107), where cells are modeled
as a black-box that can receive inputs (e.g., cytokines) from
other cells, process them, and change state (e.g., immune cells
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can switch between inactive and active) accordingly with a
certain probability. Recently, Grandclaudon et al. combined
perturbation data with a multivariate quantitative model to
study context dependent interactions between DCs and helper T
cells (108). A different approach based on quantitative systems
pharmacology was recently used to simulate the effect of
ICB therapy in metastatic breast cancer patients using a four
compartments (central, peripheral, tumor-draining lymph node,
and tumor) model (109).

Additionally, combining mathematical models with
longitudinal data, i.e., data collected at different time points, can
be used to investigate the evolutionary dynamics of treatment
response. This aspect is particularly relevant, especially to be
able to distinguish at an early stage real tumor progression
(patient should be assigned to a different treatment) from
what is called pseudoprogression, i.e., temporary progression
followed by a response to the treatment (patient should be
kept on ICB). The latter behavior has been described using a
model of immune activation incorporating the dynamics of
antigen presentation (110). Based on a system of three ordinary
differential equations to describe the interaction between tumor
cells, Treg cells, and cytotoxic T cells, this model could explain
why, in response to ICBs, the tumor can worsen before starting
regressing. Other multi-cellular models have been used to
derive in silico patients to test different possible dynamics of
treatment response (111, 112), that could be compared with
longitudinal measurements of tumor load from PET/CT imaging
(112). Longitudinal data are often limited to non-invasive
imaging and, in a few cases, to transcriptomics, IHC, TCR,
and genome sequencing data (113, 114) for a limited number
of time points due to invasiveness of biopsies. Computational
modeling of longitudinal data is still at its infancy, but we
envision that in the future more mechanistic dynamic models
will be able to exploit this type of data for definition of
dynamic biomarkers.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Current limitations in identifying predictive biomarkers for
ICB therapy are partially due to overlooking the complexity

of the TME. Following the advancements in technologies to
measure multi-omics data, measurements of bulk populations,
individual cells, and spatial information have paved the way
to a more comprehensive view of the TME. Recent efforts
are focused on searching for signatures of response to ICBs
that consider quantification, localization, and functionality of
different immune cells in the TME, showing improved predictive
power with respect to simpler biomarkers (115). However,
they still miss an integrative strategy that takes a view of the
whole TME, rather than examining each factor in isolation.
In this respect, mechanistic models incorporating existing
biological basis, e.g., on intra- and inter-cellular pathways,
can accompany both therapy and biomarker development in
immuno-oncology (116).

There is compelling evidence that the interplay of the immune
system, tumors, organs, and external environment, harmonizes
antitumor immune responses (117). Therefore, we envision
that novel systems medicine approaches entailing mathematical
models can gradually build up a profile of the TME, both in the
lab and, more importantly, in the clinic. To this end, building
patient specific models have become of increasing importance,
especially when based on data that can be measured in clinical
settings. Moreover, systems approaches can especially be useful
to provide rationale for alternative personalized treatments such
as combinatorial therapy.
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Recent technological advances and international efforts, such as The Cancer Genome

Atlas (TCGA), have made available several pan-cancer datasets encompassing multiple

omics layers with detailed clinical information in large collection of samples. The

need has thus arisen for the development of computational methods aimed at

improving cancer subtyping and biomarker identification from multi-modal data. Here

we apply the Integrative Network Fusion (INF) pipeline, which combines multiple omics

layers exploiting Similarity Network Fusion (SNF) within a machine learning predictive

framework. INF includes a feature ranking scheme (rSNF) on SNF-integrated features,

used by a classifier over juxtaposed multi-omics features (juXT). In particular, we show

instances of INF implementing Random Forest (RF) and linear Support Vector Machine

(LSVM) as the classifier, and two baseline RF and LSVM models are also trained on juXT.

A compact RF model, called rSNFi, trained on the intersection of top-ranked biomarkers

from the two approaches juXT and rSNF is finally derived. All the classifiers are run in

a 10x5-fold cross-validation schema to warrant reproducibility, following the guidelines

for an unbiased Data Analysis Plan by the US FDA-led initiatives MAQC/SEQC. INF is

demonstrated on four classification tasks on three multi-modal TCGA oncogenomics

datasets. Gene expression, protein expression and copy number variants are used to

predict estrogen receptor status (BRCA-ER, N = 381) and breast invasive carcinoma

subtypes (BRCA-subtypes, N = 305), while gene expression, miRNA expression and

methylation data is used as predictor layers for acute myeloid leukemia and renal clear

cell carcinoma survival (AML-OS, N = 157; KIRC-OS, N = 181). In test, INF achieved

similar Matthews Correlation Coefficient (MCC) values and 97% to 83% smaller feature

sizes (FS), compared with juXT for BRCA-ER (MCC: 0.83 vs. 0.80; FS: 56 vs. 1801)

and BRCA-subtypes (0.84 vs. 0.80; 302 vs. 1801), improving KIRC-OS performance

(0.38 vs. 0.31; 111 vs. 2319). INF predictions are generally more accurate in test than
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one-dimensional omics models, with smaller signatures too, where transcriptomics

consistently play the leading role. Overall, the INF framework effectively integratesmultiple

data levels in oncogenomics classification tasks, improving over the performance of

single layers alone and naive juxtaposition, and provides compact signature sizes1.

Keywords: multi-omics, classification, network, oncogenomics, predictive modeling

1. INTRODUCTION

The challenge of integrating multi-omics data is as old as
bioinformatics itself (1, 2), but, despite the wide literature, it
remains an open issue nowadays, even worth being funded by
major institutions2.

This study introduces Integrative Network Fusion (INF), a
reproducible network-based framework for high-throughput
omics data integration that leverages machine learning models
to extract multi-omics predictive biomarkers. Originally
conceptualized and tested on multi-omics metagenomics data in
an early preliminary version (3, 4), INF combines the signatures
retrieved from both the early-integration approach of variable
juxtaposition (juXT) and an intermediate-integration approach
[SNF, (5)], to find the optimal set of predictive features. In
particular, first a set of top-ranked features is extracted by juXT
by a classifier, here Random Forest (RF) and linear Support
Vector Machine (LSVM). Then, a feature ranking scheme (rSNF)
is computed on SNF-integrated features and finally a RF model
(rSNFi) is trained on the intersection of two sets of top-ranked
features from juXT and rSNF, obtaining an approach that
effectively integrates multiple omics layers and provides compact
predictive signatures. Selection bias and data-leakage effects are
controlled by performing the experiments within a rigorous Data
Analysis Plan (DAP) to warrant reproducibility, following the
guidelines of the US FDA-led initiatives MAQC/SEQC (6–8). In
particular, to alleviate the computational burden of the full DAP
pipeline, an approximated DAP is designed to lighten computing
without significantly affecting the results. Further, experiments
are run on samples with randomly shuffled labels as a sanity
check vs. overfitting effects and, finally, INF robustness is verified
by testing on different train/test splits.

We test INF on three datasets retrieved from the TCGA
repository, to predict either the estrogen receptor status (ER)
or the cancer subtype on the breast invasive carcinoma (BRCA)
dataset, and to predict the overall survival (OS) on the kidney
renal clear cell carcinoma (KIRC) and acute myeloid leukemia
(AML) datasets. Overall, INF improves over the performance of
single layers and naive juxtaposition on all four oncogenomics
tasks, extracting a biologically meaningful compact set of
predictive biomarkers. Notably, the transcriptomics layer is

1INF source code is publicly available on the GitLab repository https://gitlab.

fbk.eu/MPBA/INF, while data is archived at http://dx.doi.org/10.6084/m9.figshare.

12052995.v1
2European Call Multi-omics for genotype-phenotype associations (RIA) https://

ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/

topic-details/biotec-07-2020

TABLE 1 | Data summary.

Dataset-task #Samples Layers (#features)

BRCA-ER 381
gene (17814), cnv (18050), prot (142)

BRCA-subtypes 305

AML-OS 157 gene (10265), meth (2500), mirna (352)

KIRC-OS 181 gene (10265), meth (2500), mirna (484)

Synthetic-ST 380 layer1 (100), layer2 (50), layer3 (250)

BRCA, breast invasive carcinoma; AML, acute myeloid leukemia; KIRC, kidney renal

clear cell carcinoma; gene, gene expression; cnv, copy number variants; prot, protein

expression; meth, methylation; mirna, microRNA expression; ER, estrogen receptor;

subtypes, breast cancer subtypes; OS, overall survival; ST, synthetic target.

prevalent inside the inferred INF signatures, consistently with
published findings (9).

The INF framework is currently designed to integrate an
arbitrary number of one-dimensional omics layers. We plan to
further extend the framework by enabling the integration of
histopathological features extracted from whole slide images (10)
or deep features from radiological images (11) extracted by deep
neural network architectures, carefully addressing all potential
caveats (12).

2. MATERIALS AND METHODS

2.1. Data
Three multi-modal cancer datasets generated by The Cancer
Genome Atlas (TCGA) Research Network (https://www.cancer.
gov/tcga) and four classification tasks are considered in this
study. Protein expression (prot), gene expression (gene), and
copy number variants (cnv) are used to predict breast invasive
carcinoma (BRCA) estrogen receptor status (0: negative; 1:
positive) and subtypes (luminal A, luminal B, basal-like, HER2-
enriched). Methylation (meth), gene expression (gene), and
microRNA expression (mirna) are used to predict acute myeloid
leukemia (AML) and kidney renal clear cell carcinoma (KIRC)
overall survival (0: alive; 1: deceased). The number of samples and
features for each omic layer and classification task are detailed in
Table 1; class balance, split by dataset, is reported in Table 2.

For AML (13) andKIRC (14), gene expression is profiled using
the Illumina HiSeq2000 and quantified as log2-transformed
RSEM normalized counts; miRNA mature strand expression is
profiled using the Illumina Genome Analyzer and quantified as
reads per million miRNA mapped; and methylation is assessed
by Illumina Human Methylation 450K and expressed as beta
values. For BRCA (15), gene expression is profiled with Agilent
244K custom gene expression microarrays; protein expression is
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TABLE 2 | Class balance.

Dataset-task Labels (#samples)

BRCA-ER Negative (95), Positive (286)

BRCA-subtypes LuminalA (170), LuminalB (102), Basal-like (81),

HER2-enriched (48)

AML-OS Dead (101), Alive (56)

KIRC-OS Dead (133), Alive (48)

BRCA, breast invasive carcinoma; AML, acute myeloid leukemia; KIRC, kidney renal clear

cell carcinoma; ER, estrogen receptor; subtypes, breast cancer subtypes; OS, overall

survival.

TABLE 3 | Synthetic data summary for each simulated layer.

Layer #

Features

# Informative

features

Multiplicative

factor

Class

separation

Random

state

Layer 1 100 10 Default 1.0 1

Layer 2 50 5 Default 1.2 2

Layer 3 250 25 10 0.8 3

Multiplicative factor, class separation, and random state refer to the parameters scale,

class_sep, and random_state of the make_classification function in scikit-

learn.

assessed by reverse phase protein arrays; copy number profiles are
measured using Affymetrix Genome-Wide Human SNP Array
6.0 platform, copy number variants are segmented by the TCGA
Firehose pipeline using GISTIC2 method, and then mapped
to genes.

The original data is publicly accessible on the National
Cancer Institute GDC Data Portal (https://portal.gdc.cancer.
gov/) and the Broad GDAC Firehose (https://gdac.broadinstitute.
org/), where further details on data generation can be found. The
data was retrieved in December, 2019 and January, 2020 using the
RTCGA R library (16).

Furthermore, the INF pipeline has been tested on a synthetic
dataset with 380 observations in two classes (70% class 1
and 30% class 2, defining the synthetic target ST), 3 pseudo-
omics layers, and 400 features (layer 1: 100; layer 2: 50;
layer 3: 250). The dataset is generated in-house using scikit-
learn’s make_classification function with the arguments
shuffle=False and flip_y=0. The number of informative
features and the difficulty of the task were set on a per-layer basis,
as summarized in Table 3.

2.2. In silico Workflow
The INF pipeline integrates two or more omics layers, e.g., gene
expression, protein expression, or methylation, in a machine
learning framework for improved patient classification and
biomarker identification in cancer. The core consists of three
main components, structured as in Figure 1, managing the
integration of the omics layers and their predictive modeling. A
baseline integration method (juXT) is first considered by training
a Random Forest (RF) (17) or a linear Support Vector Machine
(LSVM) (18) classifier on juxtaposed multi-omics data, ranking
features by ANOVA F-value. Secondly, the multi-omics features

are integrated by Similarity Network Fusion (SNF) (5), a method
that computes a sample similarity network for each data type
and fuses them into one network. INF introduces a novel feature
ranking scheme (rSNF) that sorts multi-omics features according
to their contribution to the SNF-fused network structure. A RF
or LSVM classifier is trained on the juxtaposed multi-omics data,
ranking features by rSNF. A compact RF model (rSNFi) is finally
trained on the juxtaposed dataset restricted on the intersection of
top-ranked biomarkers from juXT and rSNF.

2.3. Omics Integration
In a comparative review of scientific literature, SNF (5) emerged
as one of the most reliable alternatives to simple juxtaposition-
based integration. SNF is a non-Bayesian network-based method
that can be divided into two main steps: the first step builds
a sample-similarity network for each omics dataset, where
nodes represent samples and edges encode a scaled exponential
Euclidean distance kernel computed on each pair of samples;
the second step implements a non-linear combination of these
networks into a single similarity network through an iterative
procedure. The multi-omics datasets are first converted into
graphs, and for each graph two matrices are computed: a
patient pairwise similarity matrix (“status matrix”), and a matrix
with similarity of each patient to the K most similar patients,
through K-nearest neighbors (“local affinity matrix”). At each
iteration, the status matrix is updated through the local affinity
matrix, generating two parallel interchanging processes. The
status matrices are finally fused together into a single network.
Spectral clustering is performed on the fused network, in order
to identify sub-communities of samples, potentially reflecting
phenotypes. The clustering performance is evaluated with respect
to a ground truth, i.e., the real phenotype each sample belongs
to, by the Normalized Mutual Information (NMI) score. SNF
integrates multiple omics datasets into a single comprehensive
network in the space of samples rather than measurements (e.g.,
gene expression values).

This work proposes multi-omics integration as an approach
to identify robust biomarkers of samples phenotypes or cancer
subtypes (e.g., survival status vs. breast cancer subtyping);
consequently, it is necessary to extract measurements
information from the SNF-fused network of samples. To
this aim, we extended SNF by implementing rSNF (ranked
SNF), a feature-ranking scheme based on SNF-fused network
clustering. In detail, a patient networkWi is built for each feature
fi, based on fi alone, and spectral clustering is performed on it.
Then, NMI score is computed comparing the samples clusters
found inside Wi with those in the fused network; the higher the
score, the more similar the clustering between the fused network
andWi. Thus, each feature fi is associated to a consistency score,
ranking all multi-omics features with respect to their relative
contribution to the whole network structure.

The entire procedure of similarity networks inference and
fusion relies on two hyperparameters: α, the scaling variance
in the scaled exponential similarity kernel used for similarity
networks construction, and K, the number of nearest neighbors
in sparse kernel and scaled exponential similarity kernel
construction. While the original method (5) assigned fixed values
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FIGURE 1 | Graphical representation of the INF workflow for N omics datasets with K phenotypes. A first RF or LSVM classifier is trained on the juxtaposed data,

ranking features by ANOVA F-value (juXT ). The data sets are then integrated by Similarity Network Fusion, the features are ranked by rSNF and a RF or LSVM model

is developed on the juxtaposed dataset with the rSNF feature ranking (rSNF). Finally, a RF or LSVM classifier is trained on the juxtaposed dataset restricted to the

intersection of juXT and rSNF top discriminant feature lists (rSNFi). The classifier is either RF or LSVM throughout the INF workflow. All the predictive models are

developed within the DAP described in the methods and graphically represented in Figure 2. The alternative and mutually exclusive paths A and F are followed by the

“accelerated DAP” and the “full DAP” procedures, respectively (see section 2).

to α and K, in this study the optimal hyperparameters are chosen
among the grids αgrid = {0.3, 0.35, 0.4, 0.45, . . . , 0.8} and Kgrid =

{i ∈ N, 10 ≤ i ≤ 30} in a 10×5-fold cross-validation schema.

2.4. Predictive Profiling
To ensure the reproducibility of results and limit overfitting, the
development of classification models is performed inside a Data
Analysis Plan (DAP) (Figure 2), following the guidelines derived
by the U.S. Food and Drug Administration MAQC/SEQC
studies (6, 19). Data is split in a training set (TR) and two
non-overlapping test sets (TS, TS2), preserving the original
proportion of patient phenotypes (classes). The TR/TS/TS2
partitions are 50/30/20 of the entire data set, respectively. The
data splitting procedure is repeated 10 times so to obtain 10
different TR/TS/TS2 splits. Predictive models are trained and
developed on TR and TS for juXT and rSNF; in the case of
rSNFi, the models are trained and developed on TS and TS2
to avoid information leakage due to using the same data both
for feature selection and model training (see Figure 3). For
each split, Random Forest (RF) or linear kernel Support Vector
Machine (LSVM) classifiers are trained on the training partition
within a stratified 10×5-fold cross-validation (10×5-CV). The
model performance is assessed in terms of average precision,
recall and Matthews Correlation Coefficient (MCC) (20, 21). The
MCC is generally regarded as a balanced measure of accuracy
and precision that can be used both in binary and multiclass

problems (22, 23) and even when classes are imbalanced (24).
MCC lies in [−1, 1], with 1meaning perfect prediction, -1 inverse
prediction and 0 random guess. For binary classification tasks,
MCC is calculated on true and predicted labels considering true
positive (TP), true negative (TN), false positive (FP) and false
negative (FN) values, as in the following:

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

At each CV round, features are ranked either by ANOVA F-value
(for juXT, rSNFi) or by the rSNF ranking (see section 2.3) and
different classification models are trained for increasing numbers
of ranked features, namely 5, 10, 25, 50, 75, and 100% of the total
features. A unified list of top-ranked features is then obtained by
Borda aggregation of all the ranked CV lists (25, 26). The best
model is later retrained on the whole training set restricted to the
features yielding the maximumMCC in CV, and validated on the
test partition. A global list of top-ranked features is derived for
juXT, rSNF, and rSNFi by Borda aggregation of the Borda lists
of each TR/TS split (Borda of Bordas, “BoB”). The signatures for
juXT, rSNF, and rSNFi are defined by the top N features of the
corresponding BoB lists, with N being the median size of top
features across all experiments.

In the “full” version of the DAP (fDAP), described above,
the rSNF ranking is performed at each CV round on
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FIGURE 2 | Diagram of the Data Analysis Plan (DAP), originally developed within the FDA-led MAQC/SEQC-II initiatives. If the training set labels are stochastically

shuffled beforehand, the DAP runs in “random labels” mode as a sanity check to ensure that the procedure is not affected by systematic bias.

FIGURE 3 | Data splitting procedure. To avoid information leakage due to the use of the same data both for feature selection and model training, we considered

different train and test sets according to the integration scheme. In particular, each data set is split into three non-overlapping partitions (TR/TS/TS2), corresponding to

the 50/30/20% of the entire data set, respectively. The TR/TS/TS2 partitions preserve the original proportion of patient phenotypes. Predictive models for juXT and

rSNF are trained on TR and validated on TS, while for rSNFi the train set is TS (with features restricted to the intersected biomarkers of juXT and rSNF) and TS2 the

test set.

the training portion of the data. Since this procedure is
quite demanding in terms of computational time, even if
parallelized (≈ 9 feature/min), we devised an “accelerated”
version of the DAP (aDAP), where the rSNF ranking is
precomputed on the whole TR data and used as is at each

CV round. We assessed the fDAP vs. aDAP performance
on the synthetic dataset as well as BRCA-ER and BRCA-
subtypes by comparing the overall metrics and measuring the
dissimilarity of the rSNF BoB of the two DAPs by the Canberra
distance (25).
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TABLE 4 | Summarized best predictive performances for each classification task using RF model and three omics layers.

Task Method MCC_cv (CI) MCC_ts (CI) PREC_cv (CI) PREC_ts (CI) REC_cv (CI) REC_ts (CI) Nf

BRCA-ER

juXT 0.785 (0.776, 0.795) 0.797 (0.778, 0.819) 0.935 (0.932, 0.938) 0.946 (0.935, 0.957) 0.962 (0.959, 0.965) 0.955 (0.949, 0.962) 1801

rSNF 0.792 (0.782, 0.801) 0.804 (0.779, 0.830) 0.938 (0.935, 0.941) 0.947 (0.934, 0.961) 0.961 (0.958, 0.965) 0.958 (0.949, 0.966) 1801

rSNFi 0.820 (0.808, 0.831) 0.830 (0.803, 0.857) 0.955 (0.951, 0.959) 0.951 (0.939, 0.962) 0.956 (0.952, 0.960) 0.967 (0.956, 0.977) 55.5

BRCA-subtypes

juXT 0.778 (0.771, 0.785) 0.795 (0.771, 0.817)

- - - -

1801

rSNF 0.769 (0.762, 0.777) 0.811 (0.787, 0.835) 1801

rSNFi 0.788 (0.778, 0.798) 0.838 (0.794, 0.879) 301.5

KIRC-OS

juXT 0.266 (0.243, 0.289) 0.305 (0.229, 0.382) 0.540 (0.509, 0.570) 0.579 (0.494, 0.664) 0.299 (0.280, 0.317) 0.343 (0.300, 0.393) 2319

rSNF 0.253 (0.230, 0.276) 0.274 (0.189, 0.348) 0.539 (0.505, 0.571) 0.628 (0.507, 0.739) 0.253 (0.235, 0.270) 0.257 (0.200, 0.314) 3313

rSNFi 0.268 (0.239, 0.298) 0.378 (0.288, 0.464) 0.485 (0.449, 0.521) 0.594 (0.512, 0.668) 0.321 (0.296, 0.347) 0.490 (0.380, 0.600) 111

AML-OS

juXT 0.141 (0.120, 0.163) 0.223 (0.146, 0.307) 0.675 (0.669, 0.681) 0.704 (0.682, 0.725) 0.860 (0.849, 0.870) 0.880 (0.850, 0.907) 6559

rSNF 0.180 (0.157, 0.202) 0.263 (0.175, 0.366) 0.685 (0.679, 0.691) 0.717 (0.692, 0.743) 0.876 (0.867, 0.886) 0.873 (0.847, 0.903) 656

rSNFi 0.274 (0.245, 0.301) 0.176 (0.068, 0.278) 0.726 (0.718, 0.735) 0.673 (0.639, 0.706) 0.870 (0.858, 0.882) 0.835 (0.785, 0.880) 91.5

CI: 95% bootstrap confidence interval; {MCC,PREC,REC}_cv: best average MCC, precision, recall in cross-validation on training set splits; {MCC,PREC,REC}_ts: average MCC,

precision, recall on test set splits; Nf: median number of features leading to MCC_cv. Bold indicates best performance (highest MCC and smallest signature size). Precision and recall

were computed for binary classification tasks only.

RF models are trained using 500 trees, measuring the
quality of a split as mean decrease in the Gini impurity
index (17); the regularization parameter C of LSVM models
is tuned over the grid Cgrid = {10i, i ∈ N,−2 ≤

i ≤ 3} within a 10× stratified Monte Carlo cross-validation
(50% training/validation proportion). Results for RF models are
summarized in Table 4, while LSVM models performance is
detailed in the Supplementary Tables BRCA-ER_LSVM, KIRC-
OS_LSVM.

To ensure that the predictive profiling procedure is not
affected by selection bias, the whole INF workflow, including
the rSNF procedure, is also repeated after randomly scrambling
the training set labels (“random labels” mode): in this setup, the
performance of a classifier unaffected by systematic bias should
be close to that of a random predictor, with MCC close to zero.

2.5. Implementation
The complete INF pipeline is implemented through the workflow
management tool Snakemake (27, 28), which allows automatic
handling of all dependencies required to generate the INF output.
The pipeline operates on N omics input files, one for each
layer that should be integrated, and a single file describing the
patient labels. The omics files are tab-separated text matrices
with patients on the rows and features on the columns, with row
and column identifiers. The label file is a single column file with
patient phenotypes, with no header. This input structure, with
one file per omic layer and a label file, simplifies the downstream
analysis and reduces to a minimum the preprocessing burden for
the end user.

The predictive profiling module, including the DAP, is written
in Python 3.6 on top of NumPy (29) and scikit-learn methods
(30). The ranked SNF (rSNF) procedure is implemented in R (31)
leveraging the original R scripts provided by SNF authors (5),
extended by a dedicated script for SNF tuning and a main script

for SNF analysis and the post-SNF feature selection procedure,
which is parallelized over the features for efficiency using the
foreach R library.

2.6. Computational Details
The INF computations were run on the FBK Linux high-
performance computing facility KORE, on a 8-core i7 3.4 GHz
Linux workstation, and on a 72-vCPU 2.7 GHz Platinum Intel
Xeon 8168 Microsoft Azure cloud machine (F72s v2 series).

2.7. Data and Code Availability
To further foster reproducibility and support users and
future developers, the full code of this benchmark is
publicly shared on the GitLab repository https://gitlab.fbk.
eu/MPBA/INF. Additional information is included in the
Supplementary Material available on the publisher’s website,
while the full set of experimental data can be accessed at http://
dx.doi.org/10.6084/m9.figshare.12052995.v1.

3. RESULTS

The INF workflow was run on all tasks considering 3-layer
integration and all 2-layer combinations; the DAP was also run
separately on all single-layer datasets in order to obtain a baseline.
All results presented here refer to experiments performedwith RF
classifier. Experiments using LSVM were performed on BRCA-
ER and KIRC-OS obtaining similar classification performances,
top features and layer contributions (Supplementary Tables

BRCA-ER_LSVM, KIRC-OS_LSVM). The classifier performance
for 3-layer integration is summarized in Table 4, in terms of
average cross-validation MCC on the 10 training set splits
(MCC_cv) with 95% Studentized bootstrap confidence intervals
(CI) as (MCC_min, MCC_max), average MCC on the 10 test
set splits (MCC_ts) with CI, and median number of features
(Nf) yielding MCC_cv. Similarly, precision (PREC) and recall
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(REC) are reported in Table 4 as average cross-validation and
test set values with CI. As expected, whenever there is a non-
negligible unbalance toward the positive class, the number of false
positives tends to increase, with more false positives yielding a
comparatively low precision with higher recall, and vice versa. In
both cases, theMCC efficiently works in balancing the two effects.
The classifier performance on single-layer and 2-layer data is
summarized in Figure 4.

A comparison between the “accelerated” flavor of the DAP
(aDAP) and the full DAP (fDAP) was run on synthetic
data, BRCA-ER and BRCA-subtypes data, with aDAP yielding
similar performance metrics and top-ranked biomarker lists
as fDAP (Supplementary Tables Synthetic_RF, BRCA_RF_fDAP,
canberra_distances), while being ≈ 30× faster (for BRCA-ER,
approx. 2 vs. 64 h, or 300 features/min vs. 9 features/min). All the
results presented here were thus obtained using aDAP. Moreover,
the INF workflow running in “random labels” mode achieved an
average cross-validation MCC ≈ 0, as expected by a procedure
unaffected by systematic bias.

Overall, integrating multiple omics layers with INF yields
better or comparable classification performance than using only
features from a single layer or naïve omics juxtaposition, at the
same time with much more compact signature sizes. On 3-layer
BRCA-subtypes and 2- or 3-layer KIRC-OS, INF outperforms the
single layers, as well as juXT and rSNF (Figure 4, Table 4). On
2-layer BRCA-subtypes, INF performance on gene-cnv and gene-
prot is comparable to the best-performing single-layer data (gene)
and superior to cnv and prot single layers, while INF on cnv-
prot only improves over the cnv single layer. On the BRCA-ER
task, the performance with INF integration of 2 or 3 layers is still
better than using single layers, nevertheless to a smaller extent,
except for cnv-prot integration which performs better than cnv
alone but slightly worse than gene and prot single layers. The good
performances achieved at the gene and prot single layers do not
come unexpected, since the biological nature of the target ER-
status is defined at transcriptomics level. On the more difficult
AML-OS task, INF has better performance over both rSNF and
juXT on gene-mirna andmeth-mirna integration, still improving
over single-layer performance both in terms ofMCC and reduced
signature sizes.

3.1. One or Multi-Omics Layers vs.
juXT/rSNF/rSNFi
For BRCA-ER, three-layer INF (rSNFi) integration performs
better than either rSNF or juXT (MCC test 0.830 vs. 0.804, 0.797
for rSNF and juXT, respectively). All two-layer INF integrations
perform similarly to, or better than, the corresponding rSNF and
juXT integrations, in particular for cnv-prot integration (MCC
test 0.746 vs. 0.682, 0.692 resp. for rSNF and juXT).

On BRCA-subtypes, the 3-layer INF integration performs
better than either rSNF or juXT (MCC test 0.838 vs. 0.811, 0.795
resp. for rSNF and juXT), nevertheless without improving over
the gene single-layer performance (MCC test 0.821). However,
the INF median signature size is only 301.5, compared to 1801
for rSNF and juXT, and 891 for the gene layer alone. All

FIGURE 4 | Overview of Random Forest classification performance (MCC,

Matthews Correlation Coefficient) on the four tasks in cross validation (“CV”)

and test (“ts”), on single-layer (blue shades) and on all two-layer combinations

for juXT (orange), rSNF (red) and rSNFi (green). Bars indicate 95% confidence

intervals. On top of each CV-ts pair is the median number of features leading

to best CV performance.

two-layer INF integrations yield better performance than their
corresponding juXT or rSNF integrations.

Omics integration is particularly effective for KIRC-OS, as
all 2- and 3-layer INF integrations outperform juXT, rSNF, and
each of the single-layer classifiers. In fact, 3-layer rSNFi achieves
MCC test 0.378 vs. 0.274, 0.305 (resp. for juXT, rSNF), 0.296,
0.327, 0.333 (resp. rSNFi meth-mirna, gene-mirna, gene-meth),
and 0.253, 0.261, 0.249 (resp. gene,meth,mirna).

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 1065120

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Chierici et al. Integrative Network Fusion

For AML-OS, INF feature sets are always more compact
than either juXT or rSNF, with three-layer integration giving
better MCC than any of the INF two-layer integrations (MCC
test 0.176 vs. 0.125, 0.169, 0.047, respectively three-layer vs.
meth-mirna, gene-mirna, gene-meth). Moreover, cross-validation
MCCs corresponding to INF integration are better than any
single layer MCC as well as rSNF and juXT.

3.2. Characterization of the Signatures
Identified by INF
For all tasks, INF signatures are markedly more compact with
respect to both juXT and rSNF.With 91.5 vs. 6559 (1.4%) median
features (rSNFi vs. juXT), the largest reduction in size occurs
for AML-OS 3-layer integration, while the least reduction is
observed for BRCA-subtypes task, with 301.5 vs. 1801 (16.7%)
median features (rSNFi vs. juXT).

In terms of contributions from the omics datasets being
integrated, the gene layer generally provides the largest number
of features to the signatures identified by the INF workflow.
In particular for the BRCA dataset, in both ER and subtypes
tasks, the gene layer contributes over 95% of the top features
for juXT and rSNFi, with rSNF signatures being slightly more
balanced (prot contribution remains marginal, while cnv
provides 28.3 and 17.7% of the top features in ER and subtypes
tasks respectively). This is expected as the class label is defined
mainly at transcriptomics level. In AML-OS experiments, the
layer contributing the most is still gene, accounting for ca. 78,
73, and 81% of the top feature sets for RF juXT, rSNF and
rSNFi experiments, respectively. In KIRC-OS experiments,
gene is the layer contributing the most to the top juXT and
rSNF feature sets, while meth is the major contributor for
rSNFi. The percentage of features from each omic layer
contributing to the top signatures for juXT, rSNF and rSNFi
3-layer integrations are reported in Supplementary Tables

layer_contribution. The RF rSNFi signatures for all tasks are
available in Supplementary Tables BRCA-ER_RF_rSNFi,
BRCA-subtypes_RF_rSNFi, AML-OS_RF_rSNFi and
KIRC-OS_RF_rSNFi.

Even though a systematic biological interpretation of the
identified signatures is beyond the scope of this work, to ascertain
the reliability of our results we compared them with published
data. The top features in the BRCA-ER rSNFi signature include
multiple genes known to be associated with breast carcinoma
progression and outcome such as AGR3, B3GNT, and MLPH
(32–34). In addition we find the estrogen receptor gene (ESR1
from the gene and ER-alpha from the prot layer) and the
transcription factor GATA3 (from both gene and prot layers) (35).
Both the BRCA-ER and BRCA-subtypes signatures include genes
previously identified as novel biomarkers for intrinsic breast
carcinoma subtype prediction (36). Interestingly there is only
partial overlap between the top features identified in BRCA ER
vs. subtypes tasks. Considering AML-OS task, it is noteworthy to
mention that the top feature identified has been recently reported
as a potential biomarker predicting overall survival in a subset of
AML patients (37).

Within the mirna features of the AML-OS signature, MIR-
203 expression was recently found to be associated with AML
patient survival (38); MIR-100 is highly expressed in AML and
was found to regulate cell differentiation and survival (39); high
expression of miR-504-3p was reported to be associated with
favorable AML prognosis (40). Given that the rSNFi signature
identified in the KIRC-OS task contains a large percentage
of methylation data (86.5%), its direct interpretation is more
difficult. It is however interesting to observe that all the 15 gene
features in the signature are identified as prognostic markers for
renal carcinoma according to the Human Protein Atlas (41).

3.3. Unsupervised Analysis
The features selected by juXT, rSNF and rSNFi are projected
on a bi-dimensional space using the UMAP unsupervised
multidimensional projection method (42, 43). Here we show an
example on the BRCA-subtypes 3-layer dataset, with a UMAP
projection of the features selected by juXT (Figure 5) compared
to the UMAP projection of the INF signature (Figure 6) for one
of the 10 data splits (theUMAPplots for the remaining 9 splits are
in Figures S1, S2). Colors represent cancer subtypes and shapes
represent training/test partitions. Using the 1801 juXT features,
cancer subtypes are roughly clustered, with HER2-enriched and
Luminal B being more dispersed (Figure 5). The clusters appear
to be more sharply defined in the projection of the 302-feature
INF signature: in particular, Basal-like patients form a distinct
cluster, while Luminal A, Luminal B and HER2-enriched patient
clusters are close to each other, slightly overlapping yet hinting
to a trajectory pattern (Figure 6). The HER2/luminal cluster
contains two patients classified as basal-like subtype, consistently
with the findings of (44).

4. DISCUSSION

4.1. Background and Related Work
Ritchie et al. (45) defined omics data integration as the
combination of multiple omics datasets that can be used
for the development of models to predict complex traits or
phenotypes. The problem of data integration in computational
biology is far from having a consolidated and shared solution.
Many long-standing obstacles are still far from being overcome,
and the increasing availability of data [e.g., TCGA, (46)] and
computational tools [see for instance (47–51) and https://
github.com/mikelove/awesome-multi-omics], also interactive
[e.g., (52)], is raising new issues that need to be addressed. In
fact, not only are existing datasets still lacking standardization
protocols to deal with their complexity and heterogeneity, but
also the reliability, reproducibility and interpretability of new
computational methods are emerging as urgent and relevant
questions (53). Moreover, modern technologies allow the rapid
extraction of high-dimensional, high-throughput features from
different sources (e.g., gene expression, DNA sequencing,
metabolomics, or high-resolution images), which in turn require
collaboration between biologists, computer scientists, physicians
and other experts. The lack of common methodologies and
terminologies can transform this synergy into a further level
of complexity in the process of data integration (54). As
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FIGURE 5 | UMAP projection on the BRCA-subtypes task with 3-layer juxtaposed data. Circle, TR set; triangle, TS set; diamond, TS2 set.

observed in (55, 56), specific technological limits, noise levels
and variability ranges affect the different omics, and thus
confounding the underlying biological signals, yielding that really
integrative analysis is still very rare, while different methods often
discover different kinds of patterns, as evidenced by the lack
of consistency in the published results, although efforts in this
direction have started appearing (57, 58).

Indeed, the underlying hypothesis of multi-omics integration
is that different omics data can provide complementary
information (56) [although sometimes redundant (9)], and thus
a broader insight with respect to single-layer analysis, for a better
understanding of disease mechanisms (59). This assumption has
been confirmed by multiple studies on diverse diseases, such
as cardiovascular disease (60), diabetes (61), liver disease (62),
or mitochondrial diseases (63), and also longitudinally (64),
suggesting that the more complex the disease the more
advantageous the integration. As the co-occurrence of multiple
causes and correlated events is a well-known characteristic of
tumorigenesis and cancer development, the integration of data
generated from multiple sources can thus be particularly useful
for the identification of cancer hallmarks (65–68).

Many computational strategies have been introduced that
combine multiple types of data to identify novel biomarkers and
thus to predict a phenotype of interest or drive the development
of intervention protocols. Given the heterogeneity of data and
tasks, these techniques deal with the data integration at different
levels of the learning process: (i) by concatenating the features
before fitting a model (early-integration), (ii) by incorporating
the integration step into the model training (intermediate-
integration), or (iii) by combining the outputs of distinct models
for the final prediction (late-integration) (69, 70).

In the early-integration approach, also known as
juxtaposition-based, the multi-omics datasets are first
concatenated into one matrix. To deal with the high-
dimensionality of the joint dataset, these methods
generally adopt matrix factorization (55, 56, 58, 71),
statistical (47, 49, 58, 60, 62, 72–76), and machine learning
tools (58, 76, 77). Alternatively, data models relying on
polyglot approaches can be used especially in (bio)informatics
applications (78, 79). Although the dimensionality reduction
procedure is necessary and may improve the predictive
performance, it can also cause the loss of key information (69).
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FIGURE 6 | UMAP projection on the BRCA-subtypes task with 3-layer juxtaposed data restricted to the rSNFi signature. Circle, TR set; triangle, TS set; diamond, TS2

set.

Moreover, biomarkers identified purely on a computational
statistics rationale frommeta-omics features often lack biological
plausibility (80).

In order to maximize the contribution of the single-omics
layer, the late-integration methods first model each dataset
individually, and then merge or average the results; they are
also known as model-driven (70, 81). Although these techniques
avoid the pre-selection of the features, they do not leverage the
hidden correlations between the data, posing again the risk of
signal loss (80, 82).

The intermediate-integration strategies aim at developing
a joint model that accounts for the correlation between the
omics layers, to boost their combined predictive power (83).
Among these methods, the network-based models refer to the
reconstruction of a graph representing the complex biological
interactions (76, 84), known or predicted, between the variables
to discover novel informative relationships (85). They have
successfully been applied in cancer research for the identification
of pan-cancer drug targets (86), the detection of subtype-
specific pathways (83, 87) and of genetic aberrations (88), or
the stratification of cancer patients (89–91). In particular, Koh
et al. (44) predicted breast cancer subtypes by applying amodified

shrunken centroid method in the development of their network-
based tool, iOmicsPASS. Further, breast cancer datasets in TGCA
represent a benchmark for integrative models (92–94), as well as
AML (95).

More recently, the success of deep learning algorithms
in various bioinformatics fields (96) prompted the adoption
of deep neural networks for omics-integration in precision
oncology. Autoencoders and convolutional neural networks
have been effectively trained for the prediction of prognostic
outcomes (9, 97), response to chemotherapeutic drugs (50), and
gene targeting (98), by adopting either an early-integration (9,
98) or a late-integration (50, 97). Although deep learning
models hold the potential to include image-derived features in
the integration workflow, they suffer from interpretability and
generalization issues (99).

Although it is clear that no single method is consistently
preferable, and that most of the proposed approaches are task
and/or data dependent (80), the complexity of tumor analysis
suggests that network-based approaches are needed (87, 100).

In this context, it is clear that omics-integration is one of
the most promising and demanding challenges of the modern
bioinformatics, and that there is an urgent need to prove the
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reproducibility, interpretability, and generalization capability of
the proposed methods (85, 101).

4.2. Integrative Network Fusion
We present the INF framework for the characterization of
cancer patient phenotypes by integrated multi-omics signatures,
combining an improved version of a state-of-the-art integration
technique (5) with predictive models developed inside a Data
Analysis Plan (6) for machine learning. The framework is applied
to TCGA data to predict clinically relevant patient phenotypes
such as the overall survival or cancer subtypes.

The simplest approach for multi-omics data integration
consists in juxtaposition of normalized measurements into one
joint matrix, followed by the development of a predictive model.
Juxtaposition-based integration is considered as a baseline
technique, since it is the most naïve approach to combine two
datasets; moreover, it enables to identify multi-omics signatures
by borrowing discriminatory strength from information derived
by all datasets. Juxtaposition further dilutes the already possible
low signal-to-noise ratio in each data type, affecting the
understanding of the biological interactions at the different
omics levels.

Conversely, the INF method for omics data integration is an
improvement of the popular Similarity Network Fusion (SNF)
approach (5), which has inspired several studies in the scientific
literature, specifically in cancer genomics (77, 87, 102–106).
SNF maximizes the shared or correlated information between
multiple datasets by combining data through inference of a joint
network-based model, accounting for how informative each data
type is to the observed similarity between samples.

Two innovative solutions have been implemented in this
study: (i) we devised a SNF-based procedure to rank variables
according to their importance in clustering samples with similar
phenotypes; and (ii) predictive models were developed exploiting
the SNF-ranked variables, inside a rigorous Data Analysis Plan
which ensures reproducibility (6, 19).

The performance of INF was assessed both in terms of
statistical properties as well as biological interest. Concerning
the statistical aspect, INF was compared with predictive models
developed on the juxtaposed datasets (juXT technique), as well
as on the single-layer datasets. With INF, smaller signature sizes
were systematically derived to achieve comparable or even better
performance both in cross-validation and in test. This is an
added value for INF, as biological validation of biomarkers can
definitely benefit from signatures of small size in terms of both
costs and required time. This main achievement is mainly due to
the novel rSNF ranking, which increases the signal-to-noise ratio
from the combined layers by prioritizing the most discriminant
biomarkers in terms of network mutual information. rSNF
exploits two main SNF advantages: integration of heterogeneous
data and clustering of sample networks. The main peculiarity
of the SNF integrative procedure is its robustness to noise (5),
because weak similarities among samples (low-weight edges)
disappear, except for low-weight edges supported by all networks,
which are conserved depending on how tightly connected their
neighborhoods are across networks. Moreover, the rSNFi step
further increases the signal-to-noise ratio by training a predictive

classifier on multi-omics juxtaposed data restricted to the top-
ranked biomarkers shared by juXT and rSNF models. The
resulting signatures are compact in size (up to 99% reduction
w.r.t. juXT) while allowing predictive models to achieve equal or
better performance compared to naïve juxtaposition or the single
layers alone. While a comprehensive evaluation of the biological
meaning of the signatures identified through the INF framework
is beyond the scope of this work, we assessed their general validity
with a thorough literature search. Our investigation shows that
the signatures identified through the INF framework include
biological markers that are relevant in the tasks under analysis
and are consistent with previously published data. Further, as
in (9), the largest contribution in the biomarkers’ lists is provided
by gene expression, while epigenomics, proteomics and miRNA
transcriptomics play a minor role.

It should be noted that, especially in computational biology,
multicollinearity between pairs of predictors and/or layers is
intrinsic in the problem. Nevertheless, most machine learning
models are indeed designed to identify the relevant predictors
even in the presence of strong linear or non-linear correlations,
provided that an appropriate DAP, feature ranking method,
and diagnostic tools (e.g., random labels) are adopted against
selection bias. To this aim, the application of a DAP derived from
the MAQC-II initiative for model selection is a core attribute of
the INF framework.

A fair comparison of INF results with other integration
methods is currently unfeasible due to the number and variety of
computational pipelines with dissimilar datasets, preprocessing
methods, data analysis plans, and performance metrics.

This work is based on the original R implementation of
the SNF algorithm (5). However, we are aware that Open
Source implementations exist in other programming languages,
in particular snfpy for Python (107). In a future release of
the INF workflow, we plan to migrate the SNF-related parts
to snfpy or a similar Python-based implementation, in order
to drop the dependency on R and to potentially improve the
overall performance.

In its current version, the INF framework supports the
integration of two or more one-dimensional omics layers.
As part of our future effort we will add support for the
integration of medical imaging layers, for example leveraging the
extraction of histopathological features from whole slide images
by deep learning (10) or using radiomics or deep features from
radiological images (11). In both cases, further issues will emerge
from the interactions between the omics and the non-omics data,
needing particular care in the integration (12).
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In recent years, high-throughput sequencing technologies provide unprecedented

opportunity to depict cancer samples at multiple molecular levels. The integration and

analysis of these multi-omics datasets is a crucial and critical step to gain actionable

knowledge in a precision medicine framework. This paper explores recent data-driven

methodologies that have been developed and applied to respond major challenges of

stratified medicine in oncology, including patients’ phenotyping, biomarker discovery,

and drug repurposing. We systematically retrieved peer-reviewed journals published

from 2014 to 2019, select and thoroughly describe the tools presenting the most

promising innovations regarding the integration of heterogeneous data, the machine

learning methodologies that successfully tackled the complexity of multi-omics data, and

the frameworks to deliver actionable results for clinical practice. The review is organized

according to the applied methods: Deep learning, Network-based methods, Clustering,

Features Extraction, and Transformation, Factorization. We provide an overview of the

tools available in each methodological group and underline the relationship among the

different categories. Our analysis revealed how multi-omics datasets could be exploited

to drive precision oncology, but also current limitations in the development of multi-omics

data integration.

Keywords: multi-omics, machine learning, tools, systematic review, oncology, cancer

INTRODUCTION

The integration and analysis of high-throughput molecular assays is a major focus for precision
medicine in enabling the understanding of patient and disease specific variations. Integrated
approaches allow for comprehensive views of genetic, biochemical, metabolic, proteomic, and
epigenetic processes underlying a disease that, otherwise, could not be fully investigated by
single-omics approaches. Computational multi-omics approaches are based on machine learning
techniques and typically aim at classifying patients into cancer subtypes (1–5), designed for
biomarker discovery and drug repurposing (6, 7).
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While complexities underling cancer still hampers our
understanding of how this disease arises and progresses (8),
multi-omics approaches have been suggested as promising tools
to dissect patient’s dysfunctions in multiple biological systems
that may be altered by cancer mechanisms (9).

Several efforts have been made to generate comprehensive
multi-omics profiles of cancer patients. The Cancer Genome
Atlas (TCGA, https://portal.gdc.cancer.gov/) provides detailed
clinical, genomics, transcriptomics, and proteomics data on
about 20,000 subjects and plans to generate additional data in
the next years for a variety of cancer types. Analysis of datasets
generated by multi-omics sequencing requires the development
of computational approaches spanning from data integration
(10), statistical methods, and artificial intelligence systems to gain
actionable knowledge from data.

Here we present a descriptive overview on recent multi-
omics approaches in oncology, which summarizes current state-
of-art in multi-omics data analysis, relevant topics in terms of
machine learning approaches, and aims of each survey, such as
disease subtyping, or patient similarity. We provide an overview
on each methodology group, while then focusing on publicly
available tools.

METHODS

Search Strategy
We retrieved publications by querying the Scopus database as:
(cancer OR tumor OR tumor OR oncolog∗)AND(multi-omic∗

OR multiomic∗ OR mixomic∗)AND(“machine learning” OR “data
fusion” OR “network analysis”).

Eligibility Criteria
Since other review covered previous years (10, 11) we included
peer-reviewed journal articles published from 2014 to 2020 (last
query 04-22-2020). If a study appears in multiple publications,
only the latest version was included. We selected relevant studies
by screening titles and abstracts, then analyzing full-texts. We
excluded papers accordingly to the following criteria:

• Review articles;
• Studies focused on non-human subjects;
• Studies intended to validate and/or apply previously

developed tools;
• Studies published in conference proceedings.
• Studies that integrate different measurement of the same type

of omics (such as, only proteomics measurement).

Categories and Analyses
For each article, we extracted the publication year and the
number of citations. We categorize the selected publications
according to:

• Data inputs (i.e., types of omics);
• Research Aims:

1. Stratified Medicine for subgroup discovery: studies aimed
at finding groups of patients that exhibit different
therapeutic/prognostic outcomes;

2. Biomarker discovery: studies that detect -omics
characteristics indicating a disease state;

3. Pathways analysis: studies aimed at discovering relation
among -omics terms, such as genes or proteins in normal
and cancer condition;

4. Drug repurposing/discovery: studies aimed at identifying
new drugs to or existing effective drugs originally developed
for other conditions;

• Methods and algorithms: Deep network, Networks-based
methods (Bayesian and Heuristic Networks), Clustering,
Features Extraction, Feature Transformation, Factorization.

We highlight successful approaches for each criterion and
identify promising ones that are either nascent or unexplored as
potential opportunities.

RESULTS

We retrieved 270 papers. The Scopus query did not retrieve
24 relevant works that were added manually based on our
previous knowledge. After a screening of papers’ abstracts, 58
papers meeting our criteria were selected. Retrieved papers
were organized into a matrix table (Table 1) and analyzed with
respect to the aforementioned categories. As highlighted in
Figure 1A, categories are not mutually exclusive, thus we show
links between groups, which relate papers applying multiple
methods. Figure 1B depicts all considered publications by year
of publication and the Field-Weighted Citation Impact, a
metric that allows comparison of papers accounting for year
of publication and number citations. Studies are shown with
different colors and shapes according to method used and the
aim/output type.

In the following sections, we describe the methodological
categories that emerged from our literature review. For each
methodological category, particular emphasis is placed on studies
providing tools that can be exploited by other users, either with
their own data or to reproduce their results.

Network-Based Methods
Network-based approaches were exploited to detect, reconstruct
and study interactions among sub network modules (13, 19,
22, 25, 40); to assess functional correlation among multi-omics
entities (12, 14, 20, 55, 61, 62); to integrate and fuse networks to
create comprehensive view of a disease (16, 24, 32, 37, 41, 63, 65).
A few work leverage Bayesian methods (4, 34) or Markov models
(17, 67).

Some approaches integrate network analysis within
frameworks that apply multiple algorithms (35, 51, 58). In
(51) a multi-platform analysis exploited for profiling pancreatic
adenocarcinoma, includes clustering and Similarity Network
Fusion to integrate genomic, transcriptomic, and proteomic
data from the different platforms. In (58) authors develop a
framework for drug repurposing and multi-target therapies by
constructing a protein network for the disease under study and
fusing several data sources. In (27), a functional interaction
network predicts variations in expressions caused by genomic
alterations, and it is exploited to prioritize cancer genes. Few
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TABLE 1 | Selected papers and categories.

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Agarwal et al. (12) 1 2015 2 0.34 Network Genomics, transcriptomics Biomarker discovery

Amar and Shamir (13) 2 2014 16 0.70 Network Proteomics, genomics Pathways analysis ModMap tool

Ao et al. (14) 3 2016 17 1.11 Network Genomics, epigenomics Subgroup identification

Argelaguet et al. (15) 4 2019 57 14.40 Feature

transformation

Transcriptomics, genomics Subgroup identification R package MOFAtools

Wang et al. (16) 5 2014 410 12.89 Network Transcriptomics, epigenomics Subgroup identification R and MATLAB code http://

compbio.cs.toronto.edu/

SNF/

Beal et al. (17) 6 2018 2 1.25 Network Transcriptomics, genomics Subgroup identification https://github.com/sysbio-

curie/PROFILE

Benfeitas et al. (18) 7 2019 9 5.17 Clustering Transcriptomics, proteomics,

metabolomics

Subgroup identification

Bonnet et al. (19) 8 2015 29 2.50 Network Genomics, transcriptomics Biomarker discovery Lemon-Tree—command-

line tool in Java http://

lemon-tree.googlecode.

com

Cancemi et al. (20) 9 2018 4 0.82 Network Transcriptomics, proteomics Pathways analysis

Cavalli et al. (21) 10 2017 213 21.09 Clustering Epigenomics, genomics,

transcriptomics

Subgroup identification

Champion et al. (22) 11 2018 6 1 Network Genomics, epigenomics Biomarker discovery AMARETTO R package

https://bitbucket.org/

gevaertlab/

pancanceramaretto

Chaudhary et al. (23) 12 2018 82 14.79 Deep network Transcriptomics, epigenomics Subgroup identification

Cho et al. (24) 13 2016 48 6.65 Network Genomics, proteomics Pathways analysis Mashup tool MATLAB code

http://cb.csail.mit.edu/cb/

mashup/

Costa et al. (25) 14 2018 4 0.58 Network Genomics, epigenomics Pathways analysis

Costello et al. (26) 15 2014 271 14.12 Feature

transformation

Genomics, transcriptomics,

epigenomics, proteomics

Subgroup identification

(drug response)

Dimitrakopoulos et al.

(27)

16 2018 29 6.67 Network Genomics, transcriptomics,

proteomics

Pathway analysis https://github.com/cbg-

ethz/netics

Drabovich et al. (28) 17 2019 1 0.53 Feature

extraction

Transcriptomics, proteomics,

secretomics, tissue specific

Subgroup identification

Francescatto et al. (29) 18 2018 6 1.59 Deep network Genomics, transcriptomics Subgroup identification

Gabasova et al. (30) 19 2017 6 0.86 Clustering Transcriptomics, proteomics,

epigenomics

Subgroup identification Clusternomics R package

https://github.com/evelinag/

clusternomics

Gao et al. (31) 20 2019 0 0 Factorization Transcriptomics, genomics Biomarker discovery

Griffin et al. (32) 21 2018 1 0.29 Network Transcriptomics, epigenomics Biomarker discovery

(Continued)
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TABLE 1 | Continued

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Hoadley et al. (33) 22 2014 668 32.88 Clustering Proteomics, transcriptomics,

genomics

Subgroup identification

Hua et al. (34) 23 2016 2 0.17 Network Genomics, epigenomics Biomarker discovery

Huang et al. (35) 24 2019 6 4.44 Network Genomics, transcriptomics,

epigenomics

Drug

repurposing/discovery

DrugComboExplorer tool

https://github.com/

Roosevelt-PKU/

drugcombinationprediction

Huang et al. (36) 25 2019 8 4.37 Deep network Transcriptomics Subgroup identification SALMON source code

https://github.com/

huangzhii/SALMON/

Kim et al. (37) 26 2017 3 0.16 Network Transcriptomics, proteomics Drug

repurposing/discovery

Kim et al. (38) 27 2018 2 0.40 Feature

extraction

Genomics, transcriptomics,

epigenomics

Subgroup identification

Kim et al. (39) 28 2019 0 0 Feature

extraction

Genomics, transcriptomics Pathways analysis

Koh et al. (40) 29 2019 2 1.48 Network Transcriptomics, proteomics Subgroup identification iOmicsPASS https://github.

com/cssblab/iOmicsPASS

Lee et al. (41) 30 2018 21 3.46 Network Genomics, transcriptomics Drug

repurposing/discovery

Liang et al. (42) 31 2015 86 5.96 Deep network Transcriptomics, epigenomics Subgroup identification

List et al. (3) 32 2014 20 2.51 Feature

extraction

Transcriptomics, epigenomics Subgroup identification

Luo et al. (43) 33 2019 0 0 Clustering Transcriptomics, genomics Subgroup identification

Ma and Zhang (44) 34 2018 4 0.71 Clustering Transcriptomics, epigenomics Similarity AFN is part of the

Bioconductor R package

https://bioconductor.org/

packages/release/bioc/

html/ANF.html

Mariette and

Villa-Vialaneix (45)

35 2018 8 1.90 Feature

transformation

Transcriptomics, genomics Subgroup identification R package mixKernel

Meng et al. (46) 36 2014 79 5.29 Feature

transformation

Transcriptomics, proteomics Subgroup identification R package omicade4

Mo et al. (47) 37 2017 18 7.03 Feature

transformation

Transcriptomics, genomics Subgroup identification R package iClusterPlus

Nguyen et al. (48) 38 2017 20 2.03 Clustering Transcriptomics, epigenomics,

genomics

Subgroup identification

O’Connell and Lock

(49)

39 2016 13 1.21 Feature

transformation

Transcriptomics, genomics Subgroup identification R Package r.jive

Pai et al. (50) 40 2019 6 5.23 Feature

extraction

Transcriptomics, metabolomics,

genomics

Similarity

(Continued)
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TABLE 1 | Continued

References References

in Figure 1

Year #Citation

22/04/2020

Scopus

field-weighted

citation impact

Method Omics Aim Tool release

Raphael et al. (51) 41 2017 269 26.77 Network Transcriptomics, genomics,

proteomics

Subgroup identification

Rappoport et al. (52) 42 2019 2 1.48 Clustering Transcriptomics, epigenomics Subgroup identification

Ray et al. (4) 43 2014 30 2.34 Bayesian

network

Genomics, epigenomics Biomarker discovery MATLAB code https://sites.

google.com/site/

jointgenomics/

Rohart et al. (53) 44 2017 285 38.04 Feature

transformation

Transcriptomics, genomics,

proteomics, epigenomics

Subgroup identification R package Mixomics

Sharifi-Noghabi et al.

(54)

45 2019 2 6.91 Deep network Genomics, transcriptomics Subgroup identification

(drug response)

https://github.com/

hosseinshn/MOLI

Sehgal et al. (55) 46 2015 6 0.36 Network Transcriptomics Pathways analysis

Song et al. (56) 47 2019 2 1.06 Feature

transformation

Transcriptomics, genomics,

proteomics

Biomarker discovery R package iProFun

Speicher and Pfeifer

(57)

48 2015 34 5.83 Clustering Genomics, transcriptomics Subgroup identification

Vitali et al. (58) 49 2016 16 1.51 Network Proteomics, transcriptomics Drug

repurposing/discovery

Woo et al. (59) 50 2017 30 2.97 Clustering Genomics, epigenomics Subgroup identification

Wu et al. (60) 51 2015 19 0.83 Clustering Genomics, transcriptomics Subgroup identification

Yang et al. (61) 52 2019 2 1.23 Network Epigenomics, transcriptomics Biomarker discovery

Yuan et al. (62) 53 2018 3 2.04 Network Genomics, transcriptomics,

epigenomics

Biomarker discovery

Wang et al. (63) 54 2018 6 1 Network Genomics, transcriptomics Biomarker discovery

Zhang et al. (64) 55 2018 9 1.58 Deep network Transcriptomics, genomics Subgroup identification

Zhou et al. (65) 56 2015 2 0.18 Network Genomics, epigenomics,

proteomics

Biomarker discovery

Zhu et al. (66) 57 2017 20 1.52 Feature

transformation

Transcriptomics, genomics Subgroup identification

Žitnik and Zupan (67) 58 2015 14 2.50 Network Transcriptomics, genomics Biomarker discovery
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FIGURE 1 | (A) Linkage between different methodological categories. References to papers (see Table 1). That could be categorized in different groups are reported

near the link. (B) Publications by year of publication and Field-Weighted Citation Impact. Different colors indicate exploited methods, shapes aims, and outputs.

Papers with red borders have source code or provide a tool. Papers in the “Subgroup identification” group and/or with free tool result to be the most cited across

years. The reference numbers are reported in Table 1.
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others interesting approaches (16, 19) have been discussed
in (10).

iOmicsPass
iOmicsPASS (40) implements a network-based method for
integrating multi-omics profiles over genome-scale biological
networks. The tool provides analysis components to transform
qualitativemulti-omics data into scores for biological interaction,
then it uses the resulting scores as input to select predictive sub-
networks; finally, it selects predictive edges for phenotypic groups
using a modified nearest shrunken centroid algorithm. Authors
validate iOmicsPASS on Breast Invasive Ductal Carcinoma data,
integrating mRNA expression, and protein abundance, with and
without the normalization of the mRNA data by the DNA Copy
Number Variation (CNV). When compared with the original
nearest shrunken centroid classification algorithm, iOmicsPASS
outperform the baseline method, indicating the importance
of selecting predictive signature forms densely connected sub
networks, thus limiting the search space of predictive features to
known interactions.

AMARETTO
Amaretto (22) is an algorithm developed multiple omics profiles
integration across different type of cancers. Authors illustrate
how the algorithm identifies cancer driver genes based on multi-
omics data fusion and detects subnetworks of modules across all
cancers. The algorithm identifies potential cancer driver genes
by investigating significant correlations between methylation,
CNV and gene expression (GE) data. When the driver genes
are identified it constructs a module network connecting them
with the co-expressed target genes they control. This constricts
a pan-cancer network that is able to identify novel pancancer
driver genes.

DrugComboExplorer
DrugComboExplorer (35) identifies candidate drug
combinations targeting cancer driver signaling networks
by processing DNA sequencing, CNV, DNA methylation,
and RNA-seq data from individual cancer patients using an
integrated pipeline of algorithms. The pipeline is based on two
components: the first one extracts dysregulated networks from
transcriptome and methylation profiles of specific patients using
bootstrapping-based simulated annealing and weighted co-
expression network analysis. The second component generates
a driver network signatures for each drug, evaluates synergistic
effects of drug combinations on different driver signaling
networks and ranks drug combinations according the synergistic
effects. In (35) authors apply DrugComboExplorer on diffuse
large B-cell-lymphoma and prostate cancer, demonstrating the
ability of the tool to discover synergistic drug combinations
and its higher prediction accuracy compared with existing
computational approaches.

Deep Network
DeepNetworks (DNs) are widely used to analyse omics-data (68).
In a multi-omics scenario, clustering on DNs features showed
different survival groups in neuroblastoma and liver cancer (23,

29, 64). In (42) authors integrated GE, methylation and miRNA
in a restricted Boltzmannmachine, where hidden layers represent
different survival groups in breast cancer patients. Subnetworks
are used in (54) to project different omics views in latent spaces
that are further concatenated and fed into a final network to
predict drug response.

SALMON
SALMON (Survival Analysis Learning with Multi-Omics Neural
Networks) is a Deep Learning framework that integrates
omics-data (mRNA and miRNA), clinical features and cancer
biomarkers (36). Instead of feeding a neural network with
mRNA and miRNA data, SALMON takes as input the
eigengene matrices derived from co-expression analysis. Thus,
it overcomes the high-dimensionality problem, reducing input
features of about 99%. Authors assume that mRNA and miRNA
data affect survival outcome independently, therefore the two
corresponding eigengene matrices are connected to two different
hidden layers whose output is linked to the final network with a
Cox proportional hazards regression network. Results on breast
cancer carcinoma patients showed improvements in survival
prediction ability compared to single-omics.

Clustering
Multi-omics clustering approaches are exploited to detect
regularities and patterns that reveal different cancer molecular
subtypes (21, 33, 43, 48, 57, 60) and prognostic groups in
hepatocellular carcinoma (59). In (18) consensus clustering is
performed on transcriptomics, metabolomics, and proteomics
data to stratify patients with hepatocellular carcinoma based on
their redox response. Clustering applications are often preceded
by feature selection and/or feature transformation of multi-
omics data, such as factorization, low rank approximation, and
neural network. An exhaustive review onmulti-omics integrative
clustering approaches can be found in (69).

Nemo
NEMO (NEighborhood based Multi-Omics clustering) is a
similarity-based tool that computes inter-patient similarity
matrices for each omics through a radial basis function kernel.
Spectral clustering is performed on the resulting average
similarity matrix (52). NEMO addresses the problem of partial
datasets, where not all the omics are measured for all the patients,
and the final average matrix is computed on the observed
omics values, without performing imputation. NEMO clustering
shows higher performance compared to the same approach
with imputed data, while on TCGA cancer datasets it detects
significant differences in survival for six out of 10 cancer types.

Clusternomics
The main assumption of multi-omics clustering approaches
relies on the existence of a consistent clustering structure across
heterogeneous datasets. Alternatively, in (30) authors introduced
the context-dependent clustering Clusternomics. Each omics is
seen as a context describing a particular aspect of the underlying
biological process. The global clustering structure is inferred
from the combination of Bayesian clustering assignments. Then,
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by separating cluster assignment on two levels, Clusternomics
allows the number of clusters to vary on local or global structure.
Its performances are evaluated on a simulated dataset, where
it showed higher Adjuster Rank Index compared to other
clustering techniques, but also on breast, lung and kidney
cancer from TCGA repository, where it identified clinically
meaningful clusters.

Affinity Network Fusion
Affinity Network Fusion (AFN) (44) is both a clustering and
classification technique that applies graph clustering to a patient
affinity matrix incorporating information from multiple views.
For each omic, after feature selection and/or transformation,
AFN computes patient pair-wise distances. kNN Graph Kernel
applied to the distance metric creates a patient affinity matrix
for each view. The final affinity matrix is the weighted sum of
the computed affinity matrices. AFN approach showed improved
clustering performance in detecting cancer subtypes on several
TCGA datasets when compared to its application in single omics.

Feature Extraction
In multi-omics integration, variable selection to reduce the
dimensionality of the omics dataset has a dominant role [(70),
Figure 1A]. Recursive feature elimination was exploited to select
subsets of expressed genes and methylation data to classify
breast cancer disease subtypes with a Random Forest (3). Genes
prioritization allowed prognosis prediction in different cancer
types from epigenomics, transcriptomics, and genomics data
(38), and biomarker discovery in prostate cancer (28). In (39)
authors weight gene-gene interaction from transcriptomics and
genomics data with a random walked-based method to select
the most important interaction for survival prediction in breast
cancer and neuroblastoma patients.

netDX
netDx is an algorithm that performs feature selection on Patient
Similarity Networks (PSN) to classify patients in different
prognostic groups (50). A PSN is built for each omics such
that nodes represent patients and edges stand for the similarity
of two nodes in the given view. Then netDx identifies which
networks (i.e., which omics) strongly relate high- and low-
risk patients through the GeneMANIA algorithm (71), which
solves a regression problem to maximize the edges that connect
query patients. Finally, each network is weighted according to its
ability to relate patients of the same group and networks whose
score exceeds a defined threshold are selected and combined in
a single network by averaging their similarity scores. Authors
benchmarked netDx against several machine-learning methods
to predict survival outcomes on PanCancer TCGA multi-omics
datasets, showing comparable results. On a breast cancer dataset,
netDx selected features correspond to pathways known to be
dysregulated in this type of cancer.

Feature Transformation
Feature transformation (FT) refers to algorithms that replace
existing features with new features still function of the original
ones. As shown in Figure 1B, the majority of FT techniques aims

at identifying cancer subtypes, biomarkers, omics-signatures, and
key features from multi-omics data. Zhu et al. (66) proposed
a kernel machine-learning method for a pan-cancer prognostic
assessment by integrating multi-omics data. This work is
particularly interesting since it’s the only FT method we reviewed
that allows multi-omics profile integration individually and in
combination with clinical factors. A Kernel-based approach,
combined with non-linear regression and Bayesian inference,
resulted to be the best performing algorithm in a drug sensitivity
prediction challenge (26).

In the following, we will report selected FT approaches,
although few other tools for subgroup discovery, such as
iClusterBayes (47), Multi-Omics Factor Analysis (15), JIVE (49),
and MCIA (46), are available.

MixOmics
One of the most recent and biggest efforts in this field
resulted in an R package called mixOmics (53). MixOmics
allows for multivariate analysis of omics data including data
exploration, dimension reduction, and visualization. mixOmics
can be applied in numerous of studies with different aims such
as integration and biomarker identification from multi-omics
studies. The package includes two different types of multi-omics
integration. One aimed at integrating different type of omics
data of the same biological samples, while the second focus on
integrating independent data measured on the same predictors to
increase sample size and statistical power (53). Both frameworks
aim at extracting biologically relevant features, [i.e., molecular
signatures, by applying FT techniques (53)]. In (53) authors
presented the results on 150 samples of mRNA, miRNA and
proteomics breast cancer data and showed its ability to correctly
discriminate three types of breast cancers.

mixKernel
mixKernel (45) is a R package compatible with mixOmics,
which allows integration of multiple datasets by representing
each dataset through a kernel that provides pairwise information
between samples. The single kernels are then combined into
one meta-kernel in an unsupervised framework. These new
meta-kernels can be used for exploratory analyses, such as
clustering or more sophisticated analysis to get insights into
the data integrated. The authors showed better performances of
mixKernel applied to mRNA, miRNAs and methylation breast
cancer data if compared with one kernel approach.

iProFun
iProFun (56) is a method aimed at elucidating proteogenomic
functional consequences of CNV and methylation alterations.
The authors integrated mRNA expression levels, global protein
abundances, and phosphoprotein abundances of a certain cancer.
The output consists in a list of genes whose CNVs and/or
DNA methylations significantly influencing some or all of the
data integrated. iProFun obtains summary statistics of data
integrated based on a gene-level multiple linear regression. These
statistics are then used to extract genes having a cascading
effect of all cis-molecular traits of interests and genes whose
functional regulations are unique at global protein levels. iProFun
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applied to ovarian cancer TCGA dataset showed its ability in
extracting interesting genes that could be considered targets for
future therapies.

Factorization
Traditional data mining methods are often inadequate to treat
heterogeneous, sparse and noisy data such as multi-omics.
Heavy pre-processing operations could modify, therefore loose,
the inner structure of data coming from different sources.
To discover latent characteristics hidden in huge amount of
information, factorization techniques have been applied to
highlight complex interactions among omics-data, hard to detect
using standard approaches.

Gao et al. (31) developed an integrated Graph Regularized
Non-negative Matrix Factorization model focused network
construction by integrating gene expression data, CNV data, and
methylation data. The authors used the factorization technique to
decompose and fuse the multi-omics data. Then, by combining
the results with network and mining analyses they showed
how their method was able to find potential new cancer-related
genes on two different TCGA datasets. Another method, based
on factor analysis, aims at identifying latent factors in the
multi-omics-data integrated in the model that can be used for
subsequent analysis such as subgroup identification (15). Give its
aim in extracting hidden features, we described this method in
detail in the feature transformation section.

DISCUSSION

Along with technological advances in high-throughput
sequencing, which characterize multiple “omes” from biological
samples, holistic systems for data integration and knowledge
discovery with machine-learning algorithms are still under
development. Precision oncology would greatly benefit from
actionable knowledge gained from multi-omics assays. In this
paper we provided an overview of recent works on this topic and
highlight current achievements and limitations.

We reviewed relevant tools to perform analysis based on
different combination of omics, and observed their growing
numbers in recent years, indicating strong commitments to
develop such tools. Several issues emerged, too. The majority
of the proposed techniques were applied to TCGA dataset, and
data integration was mainly focused on transcriptomics and
genomics. Efforts should be devoted to make new data sources
available to the research community (72), such as the UKBioBank
(73) and DriverDBv3 (74), and to integrate other “omes,”
such as metabolome, or patient-generated, and environmental
data. Research in this field would greatly benefit from the
development of databases specifically developed for containing

and facilitating the analysis of multi-omics and clinical data,
such as LinkedOmics (75). Another important improvement
to increase usability and reproducibility would be to aim at
developing methods that can be applied and generalized for all
omics data type.

The complexity of multi-omics data analysis requires
collaborative efforts among the clinical and machine-learning
communities and the joint application of methodologies derived

from heterogenous backgrounds. We noted that some promising
methods, such as matrix-factorization have not been extensively
exploited, while clustering and network-based approaches are the
most extensively used, probably due to their flexibility and the
possibility to be integrated in comprehensive frameworks that
include feature extraction and transformation to deal with the
curse of dimensionality. Deep learning methods, that are flexible
and achieved outstanding results in other fields, are increasingly
used, even though many works share the same “pipeline” (i.e.,
the exploitation of autoencoder hidden layers for clustering).
Interestingly, the number open source tools have increased in the
very last years (Figure 1B).

We are aware of some limitations of our review. An important
aspect that has not been covered by this review is the quantitative
comparison among tools (76), which could highlight possible
overfitting (77) and issues that may prevent the actual translation
of multi-omics approaches from bench to bedside. Although,
by indicating works that provide a usable tool (Table 1),
our review could be a starting point for a comprehensive
quantitative comparison.
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Obesity, and the obesity-associated inflammation, represents a major risk factor for

the development of chronic diseases, including colorectal cancer (CRC). Dysfunctional

visceral adipose tissue (AT) is now recognized as key player in obesity-associated

morbidities, although the biological processes underpinning the increased CRC risk

in obese subjects are still a matter of debate. Recent findings have pointed to

specific alterations in the expression pattern of non-coding RNAs (ncRNAs), such as

microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), as mechanisms underlying

dysfunctional adipocyte phenotype in obesity. Nevertheless, the regulatory networks

and interrelated processes relevant for adipocyte functions, that may contribute to a

tumor-promoting microenvironment, are poorly known yet. To this end, based on RNA

sequencing data, we identified lncRNAs and miRNAs, which are aberrantly expressed

in visceral adipocytes from obese and CRC subjects, as compared to healthy lean

control, and validated a panel of modulated ncRNAs by real-time qPCR. Furthermore, by

combining the differentially expressed lncRNA and miRNA profiles with the transcriptome

analysis dataset of adipocytes from lean and obese subjects affected or not by CRC,

lncRNA–miRNA–mRNA adipocyte networks were defined for obese and CRC subjects.

This analysis highlighted several ncRNAs modulation that are common to both obesity

and CRC or unique of each disorder. Functional enrichment analysis of network-related

mRNA targets, revealed dysregulated pathways associated with metabolic processes,

lipid and energy metabolism, inflammation, and cancer. Moreover, adipocytes from

obese subjects affected by CRC exhibited a higher complexity, in terms of number of

genes, lncRNAs, miRNAs, and biological processes found to be dysregulated, providing

evidence that the transcriptional and post-transcriptional program of adipocytes from

CRC patients is deeply affected by obesity. Overall, this study adds further evidence for

a central role of visceral adipocyte dysfunctions in the obesity–cancer relationship.
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INTRODUCTION

The increase of obesity is a major health problem afflicting
nowadays adults and children worldwide (1). Obesity is a
complex condition, characterized by excessive expansion and
functional alteration of white adipose tissue (AT), that increases
the risk of life threatening diseases such as cardiovascular
disease, diabetes and cancer, including colorectal cancer (CRC).
Indeed, white AT, particularly visceral fat, is a complex
endocrine and immunocompetent organ, homing adipocytes
and resident immune cells, exhibiting secretory as well as
immunological, metabolic, and endocrine regulatory activities
and playing a central role in obesity-associated morbidities
(2). Its functional units, the adipocytes, produce and secrete
a large array of mediators including cytokines/chemokines,
extracellular matrix proteins, hormones, growth and angiogenic
factors that influence, either locally or systemically, a variety
of physiological and pathological processes, such as immune
functions, cell proliferation, migration, angiogenesis (3, 4). In
addition of being an established risk factor (5), excess adiposity
is also associated with CRC worse outcomes (6, 7), although
the mechanisms underlying the detrimental link between obesity
and CRC are complex and not yet precisely defined. In this
respect, it has been postulated that this association may be due
to the large spectrum of cytokines and metabolites that are
produced by AT showing pro-inflammatory and cancer prone
features. Moreover, obesity-related metabolic alterations (i.e.,
triggering of insulin resistance, impairment in lipid metabolism,
endocrinologic changes and oxidative stress) may contribute to
CRC initiation and progression (8). More recently, emerging
evidence point to the role of non-coding RNAs (ncRNAs) in
many obesity-related disorders including cardiovascular and
metabolic diseases, inflammation, and cancer (9), and more
specifically in CRC (10).

NcRNAs are transcripts that are not translated into proteins.
They are present in all organisms, where they regulate
gene expression and, therefore, biological processes, at the
transcriptional and post-transcriptional level (11). Multiple
types of regulatory ncRNAs are emerging as key elements
of cellular homeostasis and diseases. Among these long
ncRNAs (lncRNAs) (>200 nts) and small ncRNAs (<200
nts), such as microRNAs (miRNAs), small interfering-, Piwi
interacting-, small nucleolar-, small nuclear-, extracellular-RNAs,
are arbitrarily classified according to their nucleotide length
(12). Among them, microRNAs (miRNAs) are evolutionarily
conserved small ncRNAs (18–25 nt in length) playing a crucial
role in cell transcriptional regulation (13, 14). Their expression
correlates with different obesity relevant parameters, such as
bodymass index (BMI), adipocyte size andmetabolic parameters,
highlighting important regulatory role in obesity (15–18). The
importance of miRNAs in mediating the initiation, growth,
and development of CRC was also reported (19). In contrast
with small ncRNAs, lncRNAs undergo post-transcriptional
modifications, such as polyadenylation and splicing, although
they lack protein-coding capacity (20). They are emerging as
miRNA sponges and inhibitors, thus releasing downstream genes
from the miRNA control (21). Furthermore, lncRNAs can also

interact with DNA, RNA and proteins, overall regulating gene
expression and epigenetic status (12). Accumulating evidence
has revealed that the expression of lncRNAs is involved in
the occurrence and development of many major diseases,
including human cancers (22, 23), and that lncRNA-miRNA-
mRNA networks are specifically associated with CRC (24).
High-throughput methods and bioinformatics approaches have
significantly contributed to the identification of new transcripts,
including ncRNAs. However, only few studies have described
miRNAs and lncRNAs in human AT under obesity (9, 25–27).
Moreover, no studies have reported the expression of miRNAs
and lncRNAs in AT from CRC patients. In this regard, we
recently reported that obesity and CRC, conditions characterized
by the common denominator of inflammation, are associated
with changes in the transcriptional program of adipocytes
mostly involving pathways and biological processes linked to
fibrosis, inflammation and metabolism of pyruvate, lipids, and
glucose (28). In this study, we analyzed the ncRNA expression
profiles, specifically miRNAs and lncRNAs, of lean and obese
subjects affected or not by CRC, by RNASeq/Small RNASeq
analysis. This approach allowed to highlight changes in adipocyte
miRNA and lncRNA profiles that are specifically associated
with obesity or CRC, or shared by both conditions. Finally,
by integrating bioinformatics prediction, functional enrichment
analysis, and data on differential mRNA expression previously
described (28), we identified lncRNA-miRNA-mRNA regulatory
networks and defined multiple pathways characterizing visceral
adipocytes, that are altered in obesity and/or CRC. Overall,
this might contribute to set the basis for a more tumor-
prone microenvironment, thus adding further evidence for the
central role of AT functional alterations in linking obesity
to cancer.

METHODS

Ethics Statement
Investigation has been conducted in accordance with the
ethical standards and with the Declaration of Helsinki,
and according to national and international guidelines. It
was approved by the institutional review board of Istituto
Superiore di Sanità. All enrolled subjects were provided with
complete information about the study and asked to sign an
informed consent.

Patient and Sample Collection
As previously described (28), “human visceral adipose tissue
(VAT) was collected from age-matched lean and obese subjects
undergoing abdominal surgery or laparoscopy for benign (i.e.,
gallbladder disease without icterus, umbilical hernia, and uterine
fibromatosis) or CRC conditions (histologically proved primary
colon adenocarcinoma, stage TNM 0–III). The exclusion’s
criteria were: clinical evidence of active infection, recent (within
14 days) use of antibiotics/anti-inflammatory drugs, pregnancy,
hormonal therapies, severe mental illness, autoimmune diseases,
family history of cancer, others neoplastic diseases. In the normal
weight group, the BMI range was 20–25 Kg/m2. In the obese
group the BMI was ≥ 30 Kg/m2, and waist circumference >
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95 cm for men and > 80 cm for women. The total number of
subjects was six/category.”

Adipocyte Isolation, RNA Preparation and
Sequencing
Adipocytes were isolated from human VAT as previously
described (29). Total RNA was isolated with Total RNA
Purification Plus Kit (Norgen Biotek, Canada). RNA quality and
quantity was assessed by Agilent 2,100 Bioanalyzer and samples
stored at−80◦C until use. Total RNA (2 µg) was used to prepare
the library for Illumina sequencing (Illumina TruSeq Small RNA
Sample Preparation). Single-end reads (>10M reads per sample)
were produced by Illumina HiSeq 2000.

RNASeq Data Preprocessing and
Differential Expression Analysis
Libraries were then processed with Illumina cBot for cluster
generation on the flowcell, following the manufacturer’s
instructions and sequenced on single-end mode at the
multiplexing level requested on HiSeq2000 (Illumina, San
Diego, CA). The CASAVA 1.8.2 version of the Illumina pipeline
was used to process raw data for both format conversion and
de-multiplexing. Adapters were removed and low-quality bases
were trimmed by the script TrimGalore. Per sample, per read and
per base quality of raw sequence data have been assessed with
FastQC version 0.11.3 (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) and all the included samples passed the
initial quality checks. All the sequencing data had all the range
of the per base quality values into very good quality calls, lower
than the 0.02% of the total sequences showed a per sequence low
quality score and no adapter content. Thus, no quality trimming
where performed during preprocessing. The percentage of
mapped reads resulted high with the mean value of 97.5% (min
94.08% and max 98.41%).

The transcriptome reconstruction was performed as
previously described (28). Re-annotation of previously unknown
transcripts was performed using the bioMart package (30) into
R 3.6 (31), querying available Ensemble transcript IDs and
retrieving Gene Names, Entrez gene IDs, gene and transcript
biotypes thus allowing the identification of a higher number of
lncRNAs. Multiple testing controlling procedure was applied
following Benjamini & Hochberg method hereafter referred
as False Discovery Rate (FDR). We then extracted the list of
differentially expressed lncRNAs (DEL) with a False Discovery
Rate (FDR) ≤ 0.05. For small RNASeq analysis, raw reads
where pre-processed using cutadatapt 1.9.1 (http://code.
google.com/p/cutadapt/) and reads shorter than 17 bases were
excluded. MiRNA expression quantification was carried out
using MirDeep2 (version 2.0.0.8, Bowtie version 1.1.2) (32)
using hg38.p2 genome version and 79 Ensembl version. MiRNA
mature/hairpin sequences were downloaded from Mirbase 21
version (33), then, raw counts were filtered to keep only miRNA
with more or equal to 10 reads in at least one sample. MiRNA
expression was normalized with upper quantile normalization
(EDASeq version 2.10.0) (34) while differential expression (all
comparisons) was computed using edgeR (3.18.1) (35) from raw

counts. All analyses were carried out in R and Bioconductor 3.5
version (https://bioconductor.org). Due to the limited differential
expression of miRNAs (DEM), the threshold of FDR was set ≤
0.06. For small RNA sequencing, six biological replicates per
category were prepared and the raw sequence data are available
from the NCBI Sequence Read Archive (SRA) (http://www.ncbi.
nlm.nih.gov/sra) under accession number SRA: PRJNA632999.
For long RNA sequencing, we employed the RNASeq datasets
previously published and available under accession number SRA:
PRJNA508473 (28).

mRNA-miRNA-lncRNA Regulation Network
Construction
Target genes of the identified differentially expressed miRNAs
(DEM) were searched in the TarBase v.8 (36) and miRTarBase
7.0 (37) databases which feature up-to-date experimentally
validated miRNA-targets interactions. Interactions between DEL
and DEM were retrieved in both the DIANA-LncBase v2.0
database (38), using the prediction module and a score ≥ 0.6 as
cut-off, and the ENCORI database (39) featuring experimentally
verified RNA-RNA interactions. The ENCORI database was
also used to search for DEL-mRNA verified interactions. The
overall targets of DEM and DEL were filtered against the lists
of differentially expressed transcripts (DET) and integrated to
define specific mRNA-miRNA-lncRNA interactions networks for
each condition. The Cytoscape software (40) was used to visualize
the obtained networks.

Functional Analysis
The cumulative list of DEM and DEL targets within the DET
of each condition was explored for significantly enriched
pathways with the Cytoscape plug-in ClueGO and CluePEDIA
(41) querying the KEGG, WikiPathways and Reactome
databases. Default settings were used for the pathways selection,
connectivity and grouping. A two-sided enrichement analysis
was performed, adjusting the p-values with the Benjamini-
Hochberg correction and considering significant only pathways
with p < 0.05.

Real-Time qPCR Validation of Differentially
Expressed lncRNAs and miRNAs
Twelve candidate ncRNAs, found differentially expressed by
RNASeq, were selected for validation by real time qPCR (RT-
qPCR). The validation of lncRNA expression was performed
by qPCR using SYBRGreen assays (Supplemental Table 1). The
synthesis of cDNA was performed by using 300–500 ng of
total RNA in 20 µL reaction volume using the Superscript
III kit (Thermofisher Scientific) following the manufacturer’s
instructions. The reverse transcription conditions were as
follows: 5min at 25◦C, 60min at 50◦C, and 15min at 70◦C.
cDNA was mixed with 2 × SensiFast SYBR low rox (Bioline),
lncRNA expression values were normalized to the expression
of GUSB as the endogenous control. For the validation of
miRNA expression levels, we started the reverse transcription of 6
miRNAs by using 2µl (5 ng/µl) of total RNA with the miRCURY
LNA RT Kit (Qiagen). The reverse transcription conditions
were as follows: 60min at 42◦C and 5min at 95◦C. cDNA was
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mixed with 2 × miRCURY SYBR Green Master Mix (Qiagen)
following the manufacturer’s instructions. The expression values
of miRNAs were normalized to the expression of let-7a-5p as
the endogenous control. For each sample, the relative expression
level was determined according to the 2 –11CT method after
running the samples on a QuantStudio 12K Flex Real-Time PCR
System (Thermofisher Scientific) following the manufacturer’s
instructions. For each sample, the relative gene expression
level was determined according to the 2 –11CT method.
Statistical comparisons of means from six biological replicates,
matched with RNASeq analysis, was performed between the
various subject groups (five for the NwCRC group) by one-way
analysis of variance (ANOVA) with LSD post hoc tests by using
SPSS software (Ver.20). Differences were considered statistically
significant when p-values were ≤ 0.05. Analysis of correlation
between qPCR and RNASeq data was performed by Spearman’s
rank test setting significance at p < 0.05.

RESULTS

Long and Small RNA Sequencing Analysis
Identify Differentially Expressed lncRNAs
and miRNAs That Are Associated With
Obesity and/or CRC
We have previously analyzed the transcriptome profiles of
human adipocytes isolated from visceral AT (VAT) biopsies
obtained from healthy control lean (normal weight, Nw) and
obese (Ob) subjects, or CRC patients (normal weight or obese,
NwCRC, and ObCRC, respectively), by RNA sequencing (28).
Along with the protein coding transcripts, the long RNASeq
analysis detected also a total of 90 differentially expressed
lncRNAs (DEL, FDR ≤ 0.05), 35 of which were novel transcripts
(Table 1). In NwCRC subjects, 45 DEL were found dysregulated
(11 downregulated, 33 upregulated and one DEL with two
transcripts inversely modulated, NUTM2A-AS1) compared to
Nw healthy controls. In Ob group, we found 27 DEL (3
downregulated, 23 upregulated and one DEL with two inversely
modulated transcripts, RASSF8-AS1). Finally, when comparing
ObCRC group with the control lean group, a total of 52 DEL,
including 13 downregulated, 38 upregulated and one with three
transcripts (MIR4435-2HG, one up- and two downregulated),
were found. Among the overall 90 DEL, 10 were shared by all the
three subject categories (AC109460.3, AL031429.1, AL139260.1,
APTR, FAM198B-AS1, LINC00968, LINC01106, LINC01348,
MIR4435-2HG, SNHG16), 6 were shared by NwCRC and Ob
patients (AC008105.3, AC021092.1, HIF1A-AS1, LINC00926,
RASSF8-AS1, ZNF883), 12 were shared by NwCRC and ObCRC
patients (AC009022.1, AC010457.1, AC016582.2, AC068888.1,
AL356056.1, AP000317.2, FAM27E3, MINCR, MIR100HG,
SLC14A2-AS1, STAG3L5P-PVRIG2P-PILRB, TPTEP1), and only
one was shared by Ob and ObCRC patients (AC022007.1).
On the other hand, a number of lncRNAs were selectively
modulated in each subject category, with the ObCRC group
exhibiting the highest number of specific DEL (Table 1). In
parallel, small RNASeq analysis revealed a total of 58 differentially
expressed miRNAs (DEM, FDR ≤ 0.06) in adipocytes of

TABLE 1 | Differentially expressed lncRNAs in normal weight affected by CRC

(NwCRC), obese (Ob), and obese affected by CRC (ObCRC) individuals vs.

healthy lean control.

Log2FC (FDR ≤ 5%)

Gene Name Entrez Gene ID NwCRC Ob ObCRC

Novel lncRNA

AC004241.1 4.4723

AC004477.3 1.9133

AC006504.5 2.3449

AC007098.1 6.6690

AC008105.3 4.2391 4.4356

AC009022.1 8.7676 8.7671

AC010457.1 2.2489 2.8844

AC016582.2 5.1047

AC021092.1 1.1310 1.0531

AC022007.1 9.0501 9.3198

AC023421.1 5.4800

AC061992.1 −4.2812

AC068473.5 1.4616

AC068888.1 7.4252 8.3630

AC084757.3 −2.9022

AC092279.1 −5.9393

AC099518.3 −7.8032

AC109460.3 6.9064 6.8707 6.2148

AC114956.3 2.6267

AC139256.1 2.8280

AC144548.1 −1.0320

AC141930.1 3.2551

AL031429.1 3.3503 3.0813 4.1653

AL078612.1 2.7046

AL138828.1 2.3053

AL138963.4 2.2073

AL139260.1 7.4131 6.2839 7.3094

AC016582.1 5.2659

AL161772.1 1.9376

AL355607.2 1.9507

AL356056.1 5.4758 6.9848

AL591848.3 1.5321

AP000317.2 −11.2572

AP000790.1 6.1063

FP236383.3 8.4412

Known lncRNA

AGAP11 119385 1.8547

APTR 100505854 3.3044 4.0329 2.8546

ARHGEF7-AS2 100874238 4.6621

BCYRN1 618 3.1417

CFLAR-AS1 65072 −6.3218

DLGAP1-AS1 649446 1.4003

FAM198B-AS1 285505 3.8088 4.4575 4.6582

FAM27E3 100131997 3.9401

FOXP4-AS1 101060264 6.3680

H19 283120 −22.6445

(Continued)
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TABLE 1 | Continued

Log2FC (FDR ≤ 5%)

Gene Name Entrez Gene ID NwCRC Ob ObCRC

HIF1A-AS1 100750246 3.7185 2.9894

HOXB-AS3 404266 −7.1867

LINC00486 285045 6.9600

LINC00926 283663 4.5816 4.6596

LINC00968 100507632 8.9218 8.3768 8.4248

LINC01106 151009 19.5614 19.7102 22.0251

LINC01106 151009 20.9418 20.6120 19.8254

LINC01140 339524 −3.7389

LINC01140 339524 −3.5970

LINC01184 644873 −8.4369

LINC01239 441389 −2.1368

LINC01291 102724515 −21.0782

LINC01348 731656 8.9118 8.2512 7.3795

LINC01619 256021 −8.8258

LNCOG 105369848 1.8031

LUCAT1 100505994 9.5244

MALINC1 100505636 2.0735

MAP4K3-DT 728730 5.1283

MINCR 100507316 3.7292 4.1920

MIR100HG 399959 −8.2382 −21.7228

MIR100HG 399959 −9.8115

MIR3142HG 107075116 3.1109

MIR4435-2HG 541471 9.2841 9.7786 9.1337

MIR4435-2HG 541471 −9.4517

MIR4435-2HG 541471 −8.6134

MSC-AS1 100132891 −23.2039

NUTM2A-AS1 728190 −6.5505

NUTM2A-AS1 728190 9.2961

OLMALINC 90271 −2.9871

PGM5P3-AS1 101929127 −7.6345

RASSF8-AS1 100506451 19.9364 22.0934

RASSF8-AS1 100506451 −9.9462

SCAT8 112935969 −3.9716

SLC14A2-AS1 101927980 6.4340 9.1498

SNHG16 100507246 4.6908 4.6101 5.3027

SNHG29 125144 −7.6114

SNORD3C 780853 6.8661

STAG3L5P-PVRIG2P-

PILRB

101752399 20.8685

TMEM161B-AS1 100505894 4.6379

TPRG1-AS1 100874043 −1.6872

TPTEP1 387590 7.4005

TPT1-AS1 100190939 −6.8438

UBA6-AS1 550112 −8.0421

USP9Y 8287 8.9477

XIST 7503 −25.1297

ZFAS1 441951 −5.2589

ZNF295-AS1 150142 1.8551

ZNF883 169834 6.9421 7.4847

TABLE 2 | Differentially expressed miRNAs in normal weight affected by CRC

(NwCRC), obese (Ob), and obese affected by CRC (ObCRC) individuals vs.

healthy lean control.

miRNA Log2FC (FDR ≤ 6%)

NwCRC Ob ObCRC

let-7c-5p 0.8158

let-7e-3p −0.5273 −0.5072

let-7f-5p 0.6367

let-7i-3p −0.7816

miR-100-5p −0.8363

miR-107 0.4816

miR-10b-3p 0.9854

miR-10b-5p 1.0690

miR-1246 1.4342

miR-1247-5p −1.1469 −1.2365 −1.0182

miR-125a-5p −0.6525 −0.6889 −0.7270

miR-125b-1-3p −1.1204 −1.1041

miR-1287-5p 1.1111 1.2275

miR-1296-5p −0.9913

miR-1299 1.2495

miR-1323 −1.4956

miR-144-5p 1.3677

miR-152-3p 0.6263 0.6534

miR-181c-3p 1.1703

miR-181c-5p 1.2190 1.2047

miR-181d-5p 1.2244 1.2720

miR-185-5p 0.784 0.8778

miR-193b-3p −0.7937 −0.7410 −0.7744

miR-22-5p 0.6981 0.7611

miR-24-3p 0.6745 0.7660

miR-28-5p 0.4959

miR-29b-2-5p 0.6554 0.7330

miR-29b-3p 0.9662

miR-30c-5p −0.6740

miR-3182 1.2731

miR-328-3p −0.8400

miR-33b-3p −1.2430

miR-345-5p −0.6699 −0.8146

miR-34a-5p 0.9133 1.1756

miR-361-3p −0.4835

miR-3622a-5p −1.249

miR-374a-3p 0.7650

miR-374b-5p 0.9486

miR-378f −1.0918

miR-421 0.8311 0.8296

miR-4455 −1.3104 −1.2491

miR-451a 1.2621

miR-452-5p 0.6354 0.7434

miR-483-5p 1.0648

miR-508-3p 1.1567

miR-512-3p −1.3976

miR-515-5p −1.1957

miR-516a-5p −1.4569

(Continued)

Frontiers in Oncology | www.frontiersin.org 5 July 2020 | Volume 10 | Article 1089143

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tait et al. Adipocyte lncRNA-mRNA-miRNA Networks in Obesity/CRC

TABLE 2 | Continued

miRNA Log2FC (FDR ≤ 6%)

NwCRC Ob ObCRC

miR-516b-5p −1.3241

miR-517a-3p −1.5517

miR-517b-3p −1.5517

miR-548az-5p 1.3631

miR-598-3p 0.9845

miR-664a-3p 0.9304

miR-7706 −0.8991 −0.6495

miR-92a-3p −0.5834

miR-98-5p 0.7211 0.6373

miR-99a-3p 0.5715

NwCRC, Ob, and ObCRC subjects compared to Nw individuals
(Table 2). Specifically, 22 DEM were found in NwCRC (12
upregulated and 10 downregulated), 20 DEM were detected
in Ob subjects (13 upregulated and 7 downregulated), while
the comparison of ObCRC with Nw control revealed a higher
number of dysregulated miRNAs (39 DEM, 20 upregulated and
19 downregulated), suggesting that the conditions of obesity
and CRC interact concurrently, thus influencing the miRNA
expression profile in adipocyte from ObCRC subjects. Among
the overall modulated 58 DEM, only 3 were common to all
group of subjects (miR-1247-5p, miR-125a-5p, miR-193b-3p),
7 were shared by NwCRC and ObCRC subjects (miR-125b-
1-3p, miR-22-5p, miR-29b-2-5p, miR-4455, miR-452-5p, miR-
7706, miR-98-5p), 9 were shared by ObCRC and Ob subjects
(let-7e-3p, miR-1287-5p, miR-152-3p, miR-181c-5p, miR-181d-
5p, miR-185-5p, miR-24-3p, miR-34a-5p, miR-421), while only
one was common to NwCRC and Ob subjects (miR-345-5p).
As regards the subject group-specific DEM, again the ObCRC
category exhibited the highest number of selectively dysregulated
miRNAs (Table 2). A Venn diagram was then generated to
discover the common or unique lncRNAs and miRNAs among
the three experimental groups (Ob, NwCRC, and ObCRC
subjects) (Figure 1). By intersecting DEL and DEM data from
the three comparisons (NwCRC, Ob and ObCRC individuals
compared to Nw subjects), 13 ncRNAs were found to be shared
between cancer and obese conditions. The identification of
these differentially expressed ncRNAs, likely involved directly
in creating a tumor-promoting microenvironment, may provide
clues on the epigenetic mechanisms by which obesity favor CRC
onset, as well as on how CRC development in obesity differs from
that in lean individuals.

Identification of Target Genes Regulated
by Differentially Expressed miRNAs
To investigate the potential involvement of the aforementioned
DEM in the pathogenic events related to obesity and/or CRC, we
next analyzed dysregulated miRNAs and validated consistency
of differential expression of their targets. For each identified
DEM, we extracted the list of experimentally validated mRNA

targets from TarBase and miRTarBase repositories. Based on our
previously obtained gene expression dataset (28), we considered
only those targets included in the list of differentially expressed
transcripts (DET). We then assembled an interaction network
between DEM and their target genes for each group (Figure 2).
The complete list of DEM-DET interactions for each condition is
reported in Supplemental Table 2.

In detail, interaction analysis showed 713 nodes (21 DEM
and 692 target DET) and 1,669 edges in the NwCRC network
(Supplemental Table 2), with two DEM having a number of
directed edges ≥ 200 (hsa-let-7f-5p and hsa-miR-98-5p) and
five DEM having < 200 ≥ 100 directed edges (hsa-miR-193b-
3p, hsa-miR-29b-3p, hsa-miR-125a-5p, hsa-miR-22-5p, and hsa-
miR-374b-5p). Among the modulated genes, BTG2, and SON
genes were the target of 10 DEM and other 33 DET interacted
with more than five DEM. In the interaction network of Ob
subjects, 808 nodes (20 DEM and 788 DET) and 1,759 edges were
found (Supplemental Table 2), with hsa-miR-34a-5p having 420
directed edges and six DEM having over 100 directed edges
(hsa-let-7c-5p, hsa-miR-24-3p, hsa-miR-193b-3p, hsa-miR-185-
5p, hsa-miR-181c-5p, hsa-miR-125a-5p). SON was the target
genes of 10 DEM and 33 DET interacted with more than five
DEM. In ObCRC subjects 1,056 nodes (37 DEM and 1,019 DET)
and 3,449 edges were found (Supplemental Table 2). hsa-miR-
34a-5p and hsa-miR-107 had, respectively, 464 and 357 targets,
four DEM had over 200 direct edges (hsa-miR-92a-3p, hsa-miR-
24-3p, hsa-miR-98-5p, hsa-miR-30c-5p), seven DEM had < 200
≥ 100 directed edges (hsa-miR-10b-5p, hsa-miR-193b-3p, hsa-
miR-22-5p, hsa-miR-125a-5p, hsa-miR-185-5p, hsa-miR-181c-
5p, hsa-miR-181d-5p). The top interacting DET was again SON
and other 19 DET had more than 10 directed edges.

Identification of Target Genes and
microRNAs Regulated by Differentially
Expressed lncRNAs
In addition to the miRNA regulatory networks, the dysregulation
of lncRNA expression was recently associated with obesity
and CRC (27, 42). Therefore, we constructed lncRNA-mRNA
regulatory networks through an integrated analysis of the new
identified DEL and the previously described DET (28), for each
category of subjects.

As shown in Figure 3, only for a subgroup of DEL at least one
experimentally validated interaction was found in the ENCORI
database. In particular, in NwCRC subjects, the up-regulated
DEL SNHG16, AC109460.3, NUTM2A-AS1, and STAG3L5P-
PVRIG2P-PILRB, as well as the down-regulated AP000317.2,
were relevant hubs each interacting with more than three DET
(Figure 3A). In Ob subjects, main nodes were represented
by the up-regulated SNHG16, AC109460.3, and MIR3142HG
(Figure 3B). In ObCRC subjects, the down-regulated XIST
interacted with 264 DET while the up-regulated SNHG16
and AC109460.3 interacted with more than 10 DET. Other
3 DEL (LINC01184, STAG3L5P-PVRIG2P-PILRB, AP000317.2)
had more or equal than 5 directed edges (Figure 3C).

Since lncRNAs can bind to miRNAs to “communicate” with
other RNA targets as well as to be reciprocally regulated by
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FIGURE 1 | Analysis of lncRNAs and miRNAs shared by obese and CRC-affected individuals or unique for each condition. Venn diagram showing unique or shared

ncRNAs resulting by the comparison of DEL and DEM from all pathological conditions vs. healthy lean subjects. Each comparison is represented by a circle. The

numbers in the region of the overlapping circles indicate the ncRNAs that are expressed in two or more conditions. The complete list of the 13 ncRNAs shared by

obesity and CRC is shown on the right.

miRNAs (21), we then explored the ENCORI database for
experimentally validated DEL-DEM interactions. As shown in
Figure 4, DEL-DEM interaction networks in CRC patients, both
lean and obese, displayed more interconnections than in obese
individuals not affected by CRC. In particular, 95 relationship
pairs between 28 DEL and 19 DEM were found in NwCRC
patients, with the DEL USP9Y and AC006504.5 interacting with
12 and 11 DEM respectively; besides, hsa-miR-664a-3p and
hsa-miR-22-5p were the top interaction DEM with 8 direct
connections to DEL (Figure 4A). Likewise, in ObCRC subjects,
146 relationship pairs between 34 DEL and 28 DEM were found,
with XIST and STAG3L5P-PVRIG2P-PILRB interacting with 23
and 11 DEM, respectively, and the top DEM hsa-miR-515-5p
and hsa-miR-516b-5p interacted with 15 and 8 DEL, respectively
(Figure 4C). Conversely, in Ob subjects only 37 relationship pairs
between 16 DEL and 15 DEM were found, with AC021092.1
interacting with 5 DEM and hsa-miR-181d-5p and hsa-miR-
181c-5p interacting with 5 DEL (Figure 4B).

mRNA-miRNA-lncRNA Regulatory
Networks
In order to identify novel key regulators in the transcriptional and
post-transcriptional adipocyte reprogramming under obesity and
CRC conditions, integrated lncRNA-miRNA-mRNA networks
were constructed for each conditions taking into account and
combining the interactions described between miRNA/mRNA,
lncRNA/miRNA, and lncRNA/mRNA.

In this regard, it is reported that a stronger connectivity of
RNA nodes in the network can reflect the importance of the
biological functions of these RNAs in the network. Therefore,
hub nodes with degree exceeding 5 represent key players in
biological networks (43). Based on this criterion, different

number and distribution of hubs, according to the RNA type,
were identified in the three integrated networks. Specifically,
we described 9 lncRNAs, 20 miRNAs, and 79 mRNAs hubs in
the NwCRC network, 3 lncRNAs, 18 miRNAs, and 70 mRNAs
hubs in the Ob network, and 10 lncRNAs, 36 miRNAs, and 308
mRNAs hubs in the ObCRC network, according to the higher
complexity already described for the ObCRC condition in term
of DEM-DET, DEL-DET, DEL-DEM interactions. Due to the
complexity of the networks, only nodes with degree equal or
higher than 6 are shown in Figure 5, whereas results description
refers to the whole network. Focusing on ncRNAs, the most
highly connected hubs in the NwCRC network were let-7f-
5p, miR-98-5p, miR-193b-3p, miR-29b-3p, while SNHG16, and
NUTM2A-AS1 had higher degrees compared with the other
lncRNAs (Figure 5A). In the Ob network, miR-34a-5p, let-7c-
5p, miR-24-3p, miR-193b-3p, and SNHG16, along with the novel
lncRNA AC109460.3, were the most highly connected hubs
ncRNAs (Figure 5B). Predominant nodes in the ObCRC network
were miR-34a-5p, miR-107, miR-92a-3p, miR-24-3p, while the
lncRNA XIST represents the main key interactor in the network
(Figure 5C).

Searching for common key regulators, 23 genes were found to
be the pivotal nodes in all networks, which include two miRNAs,
miR-193b-3p, and miR-125a-5p, a known (SNHG16) and a
novel (AC109460.3) lncRNA, and 19 mRNAs, indicating that
these common elements and their interactors could be involved
in relevant processes in obesity and CRC. Among the shared
mRNA nodes, we found key players involved in the adipocyte
transcriptional program (e.g., STAT3, RORA, CNOT1), in
adipogenesis and lipogenesis processes (e.g., SEC31A, BMPR2)
and in food intake and hypothalamic signaling (e.g., SON,
PRRC2A, CUX1).
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FIGURE 2 | miRNA-gene targets regulatory networks. Interaction networks between deregulated miRNAs (DEM; V-shape) and validated mRNA targets among

modulated genes (DET; circles) in (A) NwCRC, (B) Ob, and (C) ObCRC patients in comparison to healthy lean subjects. Every node represents one gene, and each

edge represents the interaction between genes. Only nodes with a number of directed edges ≥ 5 are shown (see Supplemental Table 2 for the extended network).

Shades of green and red indicate, respectively, down- or up-regulated DEM/DET.

Functional Enrichment Analysis of
Networks-Related mRNA Targets
The biological function of a miRNA-lncRNA-mRNA network
may be explained by the functions of the included target
mRNAs. Thus, target genes of DEM and/or DEL found in the
interaction networks of each subject group, were subjected to
functional enrichment analysis combining different databases
(KEGG, WikiPathways, and Reactome). The detailed list of
terms, along with the genes involved in each term, are

reported in Supplemental Table 3 and results are summarized in
Figure 6.

In NwCRC patients numerous pathway terms associated

with metabolic processes (e.g., One-carbon metabolism, Purine

metabolism, Cysteine/Methionine metabolism), lipid metabolism
(e.g., Fatty acyl-coA biosynthesis, AMPK, and SREBP signaling)
and pathways involved in cancer (e.g., Signaling by FGFR1
in disease, Pathway in clear cell renal cell carcinoma) were
obtained (Figure 6A). While the cancer pathways mainly
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FIGURE 3 | lncRNA-gene targets regulatory networks. Interaction networks between deregulated lncRNAs (DEL; squares) and validated mRNA targets among

modulated genes (DET; circles) in (A) NwCRC, (B) Ob, and (C) ObCRC patients in comparison to healthy lean subjects. Every node represents one gene, and each

edge represents the interaction between genes. Shades of green and red indicate, respectively, down- or up-regulated DEL/DET.

featured up-regulated genes, the lipid metabolism pathways
mainly included down-regulated genes. As expected, also the
obesity- associated network was enriched in terms related to lipid
metabolism (e.g., Cholesterol biosynthesis, Glycerophospholipid
Biosynthetic Pathway). Further, in Ob individuals, we found
enriched cancer pathways shared with CRC lean subjects
(e.g., Signaling by FGFR1, Pathway in clear cell renal cell
carcinoma, Integrated Breast Cancer Pathway), or unique of
obese condition, such as a TP53-related pathway, all induced
(Figure 6B). Finally, the ObCRC network (Figure 6C) was
primarily enriched by fundamental biological functions that
are implicated in inflammatory signaling pathway (e.g., Platelet
degranulation, TGF-beta signaling, IL-4, and IL13 signaling),
tumor suppression and insulin sensitivity (e.g., Regulation

of PTEN gene transcription, Interleukin-37 signaling, Insulin
resistance), along with categories related to metabolism (e.g.,
Pyruvate metabolism and Citric Acid cycle, AMPK signaling)
and cancer (e.g., FGFR1 mutant receptor activation; signaling by
VEGF). Interestingly, in contrast to what observed for Ob and
NwCRC networks, the majority of enriched categories featured
under-expressed genes in ObCRC patients, with the exception,
among others, of pathways related to energy metabolism (e.g.,
mTOR signaling and AMPK signaling), to the growth factor
EGF (e.g., EGF/EGFR signaling pathway) and to neuronal
development (e.g., Netrin-1 signaling).

Finally, pathways related to type I interferon signaling (e.g.,
Interferon type I signaling pathway, ISG15 antiviral mechanism,
antiviral mechanisms by IFN- stimulated genes) are shared by
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FIGURE 4 | lncRNA-miRNA interaction networks. Interaction networks between deregulated lncRNAs (DEL; squares) and miRNA (DEM; V-shapes) in (A) NwCRC, (B)

Ob, and (C) ObCRC patients in comparison to healthy lean subjects. Every node represents one gene, and each edge represents the interaction between genes.

Shades of green and red indicate, respectively, down- or up-regulated DEL/DEM.

obese and CRC networks. Furthermore, all networks described
showed dysregulated genes belonging to processes involved in
RNA regulation (e.g., metabolism of RNA), endocytosis and
vesicle-mediated transport (e.g., Membrane trafficking, Vesicle
budding, Endocytosis, Extracellular matrix organization) and
sumoylation (e.g., SUMO E3 ligases SUMOylate target proteins).
Interestingly, in ObCRC patients we observed a predominant
pathway repression state, again indicating that the interplay
between obesity- and CRC results in a specific modulation of
adipocyte transcriptional and post-transcriptional program.

Validation by Using Real Time qPCR
The expression levels of pivotal transcripts were validated by RT-
qPCR. Candidate transcripts were selected among those DEL and
DEM found to be shared between cancer and obese conditions
(e.g., LINC01106, LINC00968, SNHG16, miR-125a-5p, miR-
193b-3p, miR-1247-5p), along with those of ncRNAs specific
for CRC or obese subjects (e.g., XIST, H19, MINCR, miR-29b,
miR-125b-1-3p, miR-181d-5p), on the basis of their relevance
in the described regulatory networks. As shown in Figure 7,

the lncRNAs belonging to all categories of subjects (obese
and CRC affected) were found to be significantly modulated
compared to healthy lean subjects. Specifically, LINC01106 was
significantly up-modulated in Ob and ObCRC, while H19 was
specifically down-modulated in NwCRC patients. We failed to
observe a significant up-regulation of LINC00698, MINCR and
SNHG16 in NwCRC patients, although we confirmed their up-
regulation in the other subject groups (Ob and ObCRC for
LINC00698 and ObCRC for MINCR and SNHG16), according
to RNASeq analysis (Figure 7A). Overall, RNASeq and qPCR
data displayed a significant positive correlation (Rho = 0.829;
p < 0.0001). Similarly, in the case of miRNAs (Figure 7B),
qPCR analysis confirmed the down-modulation of miR-125b-
1-3p in all conditions and miR-193b only in Ob and ObCRC,
whereas the under-expression of miR-1247 and miR miR-125a-
5p was validated in Ob and ObCRC groups or ObCRC group,
respectively. We also reported an up-regulation of miR-181d-5p
in both Ob and CRC affected subjects, although RNASeq data
showed its over-expression in Ob subjects only. In contrast to
what observed from RNASeq analysis, no differential expression
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FIGURE 5 | Global view of the miRNA-lncRNA-mRNA interaction networks. miRNAs are indicated with a V-shape, lncRNAs are indicated with squares, and mRNAs

are indicated with circles. Only nodes with a number of directed edges ≥ 6 are shown. Shades of green and red indicate, respectively, down- or up-regulated

DEM/DET/DEL. (A) NwCRC, (B) Ob, (C) ObCRC individuals in comparison to healthy lean subjects.

of miR-29b-3p was found in all groups of subjects. Overall,
although we did not achieve a complete correspondence between
miRNA expression data from the two different techniques, qPCR
and RNASeq results were significantly correlated (Rho= 0.6079;
p= 0.0074).

DISCUSSION

The prevalence of obesity and obesity-associated diseases,
including CRC, is in constant increase, accounting for a large
portion of public health challenges. These multifactorial and
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FIGURE 6 | Functional enrichment analysis of differentially expressed mRNAs included in the networks. Significantly affected pathways in (A) NwCRC, (B) Ob, (C)

ObCRC patients compared to lean healthy subjects. Each node represents a significantly enriched KEGG/Wiki/Reactome term, the diameter being proportional to the

significance. Shades of green and red indicate that the node features > 50% down-regulated or up-regulated genes, respectively. Gray nodes indicate terms with

equal contribution of up- down-regulated genes.
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FIGURE 7 | Validation by real-time qPCR of selected lncRNAs and miRNAs. Expression level of selected lncRNAs (A) or miRNAs (B) for NwCRC, Ob, and ObCRC

subjects were normalized to healthy lean control. Statistical significance is indicated with * for p ≤ 0.05, and ** for p ≤ 0.005 vs. Nw control.

complex disorders are strongly interconnected, although the
mechanisms underlying the higher susceptibility to cancer
development and the poorer cancer prognosis in obese
individuals are still a matter of debate. Different components
of the AT microenvironment, such as chronic inflammation,

vascularity and fibrosis, altered levels of sex hormones, insulin
resistance, are nowadays recognized as important determinants
of CRC risk. Moreover, adipocytes release lipids acting as an
energy reservoir for cancer cells, while the rapid expansion of AT
in obesity produces hypoxia and promotes angiogenesis, favoring
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the tumor spread (7, 44, 45). Recent findings in epigenetics
emphasized an important functional role of miRNAs, as well as
of lncRNAs, in pathophysiological processes. The dysregulation
of these transcripts, in fact, has been found in pathological
conditions such as cancer and dysmetabolic disorders including
obesity. In AT, miRNAs regulate all aspects of the adipocyte
biology, including inflammation and adipokines production,
metabolic responses, lipolysis and lipogenesis, adipogenesis and
browning (9, 46). Likewise, the total number of lncRNAs
identified in AT and found to modulate adipose function, is
rapidly increasing (26, 47–49). Several studies reported the
involvement of lncRNAs in adipogenesis and lipid metabolism
(27, 50) as well as in AT function and development in mouse
models (51, 52). Nevertheless, their implication in human
adipocytes remains largely unknown. Likewise, no definitive
conclusions regarding the molecular factors and the mechanistic
processes underlying the relationships among obesity, AT
dysfunction and CRC have been reached so far. To the best of
our knowledge, this is the first comparative study that performed
an integrated multi-omic analysis on human visceral adipocytes
to assess how obesity, alone or combined to CRC, affects miRNA,
and lncRNA expression and networks, as a potential mechanism
linking obesity and CRC.

The expression of miRNAs of obese subjects with respect
to lean individuals has been previously investigated in both
VAT and subcutaneous AT (SAT), the two main fat depots
that exhibit significant differences in anatomical, cellular and
molecular features (6, 53). Heterogeneity of subjects (fat depots,
BMI), type of samples (isolated adipocytes compared to adipose
tissue), together with the use of different high-throughput
techniques (arrays, RNA sequencing) has rendered difficult to
identify a specific “miRNA signature” altered in obesity (9). In
this regard, differences in miRNAs expression were observed
when comparing visceral and subcutaneous fat (17, 54, 55),
or isolated adipocytes and whole AT (56). In our study, we
performed a whole analysis of miRNAs in human adipocytes
isolated from the visceral fat. Among the miRNAs dysregulated
in obese subjects compared to the normal weight controls, we
found those involved in adipogenesis (e.g., let-7 family, miR-
193b,−483-5p), in lipid metabolism (e.g., miR-181d), or in
glucose and insulin metabolism (e.g., miR-34a-5p,−24-3p,−144-
5p,−361-3p), previously described in different AT depots of
obese subjects (9, 57–59), further supporting a role of these
miRNAs in the functional alterations of adipocytes occurring in
obesity. Additionally, in obese adipocytes we also reported the
dysregulation of those miRNAs previously found to be involved
in the regulation of immune response, adipokine secretion and
inflammation (e.g., miR-125a-5p; −181 family, −193b) (15, 60,
61) or implicated in many aspects of carcinogenesis in several
cancer types, including CRC (e.g., miR-34a, let7e-3p, −144-
5p, −193b, −361-3p, −451a) (54, 62). Specifically, we found
that miR-125a-5p and miR-193b-3p were downregulated in both
obesity and CRC, in keeping with their previously reported
down-regulation in VAT of obese subjects (63, 64), although
contrasting results on miR-193b expression have been showed
in human SAT (56, 64). Notably, we have previously described
an up-regulation of the target genes of miR-193b (i.e., CCL2)

and miR-125a-5p (i.e., STAT3), as an important mechanism
underlying obesity-associated inflammation (29, 65), according
to the literature (54, 56). Furthermore, we also report the
characterization of 35 novel and 55 known lncRNAs in visceral
adipocytes. An important property of lncRNAs is their cell- and
tissue- specific expression (66). Therefore, the current annotation
of lncRNAs is far from being complete. Alterations in the
expression of some lncRNAs have been reported in both SAT
and VAT, as important regulators of AT functions (26, 27, 67).
In our study, we report the first analysis of lncRNAs in purified
visceral adipocytes and this could explain the discrepancies
observed with previous studies mainly conducted in whole AT
(26, 27, 67). In general, we identified known and novel lncRNAs
not previously described in other reports. Specifically, in obese
subjects we found several lncRNAs (e.g., ZFAS1, LUCAT1,
HIF1A-AS1, HOXB-AS3) already identified in the setting of
different type of cancers, but not previously reported in human
AT. Moreover, the lncRNA MIR3142HG, recently described as
important mediator of the inflammatory response in Idiopathic
Pulmonary Lung Fibroblasts positively regulating CXCL8 and
CCL2 release (68), is specifically up-modulated in obesity.
Notably, we previously reported an upregulation of both CCL2
and CXCL8 in adipocytes from Ob individuals (29), suggesting a
role of this lncRNA in the AT inflammation. Other two lncRNAs,
SNHG16, and LINC01106, were found to be upregulated in
obesity, and this modulation was shared between obese and
cancer conditions. In this regard, an abnormal expression of
SNHG16 has been observed in multiple cancers and usually
correlates with worse pathological features (69), while the novel
lncRNA LINC01106 has been recently reported to be related to
the overall survival of CRC patients by acting as inflammatory
mediator in inflammatory bowel disease (IBD)-related CRC. This
lncRNA showed also an intimate interaction with miR-193a in
epithelial tissue from IBD and CRC patients (70).

Despite the well-known link between AT related inflammation
and CRC development, no previous studies considered the
expression of ncRNAs in the AT of CRC patients. When
overlapping the data from NwCRC, Ob, and ObCRC individuals,
the down-regulation of miRNAs, such as miR-193b-3p, miR-
125a-5p, and miR-1247-5p, was found to be shared between
cancer and obese conditions. Interestingly, both miR-193b-3p,
and miR-1247-5p act as tumor suppressors in CRC or other
types of cancer (71, 72), suggesting that their repression in
AT from Ob and CRC individuals could have a potential pro-
tumorigenic role. Beside common features, some ncRNAs are
unique of tumor conditions. For instance, lncRNA H19, among
others, was repressed only in NwCRC patients, with respect to
healthy control. Interestingly, H19 has been described to play
a role in obesity-induced cancer and to promote epithelial-
mesenchymal transition of CRC, with a reported poor prognosis
for cancer patients exhibiting H19 induction (73, 74). However,
we observed an opposite expression in AT compared to cancer
cells, suggesting a different role of this lncRNA in visceral
adipocytes, that could potentially involveH19 target genes STAT3
and SPARC (75, 76). Indeed, we and others previously reported
a key role of STAT3 and SPARC in AT dysfunctions both
in obese (28, 65, 77) and CRC conditions (28, 65). Similarly,
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the lncRNA XIST is highly down-modulated in the AT from
CRC group, although its up-regulation in CRC tissues and
cell lines was reported (75, 78, 79). Remarkably, XIST can act
as oncogene or tumor suppressor depending on the human
malignancies (80) and was recently identified as a candidate in
mediating glucose metabolism in glioma and contributing to
cancer progression (81).

In this study, we not only identified some specific lncRNAs
and miRNAs across the adipocyte genome, but we also
described miRNA-lncRNA-mRNA interaction networks and the
functional analysis of the pathways in which the target genes
are involved. The target genes we identified in the networks
were mainly enriched in several pathways, associated with
metabolic processes, lipid and energy metabolism, inflammation,
and cancer. Specifically, the SREBP pathway was remarkably
inhibited in the NwCRC network, with implications not only on
lipid metabolism but also on inflammation-mediated metabolic
diseases, as well as on immune responses (82). Of note, the
lncRNA SNHG16, that we have identified as a main hub of
this network, has been reported to modulate the lipogenesis via
regulation of SREBP2 expression (83), and to affect others genes
involved in lipidmetabolism (84). Another intriguing connection
identified in Ob network is the upregulated TP53 transcriptional
regulation pathway. The activation of this pathway has been
previously observed in obesity and correlated to the release of
inflammatory cytokines fueling cancer initiation and progression
(85), thus potentially setting the basis for a more tumor-prone AT
microenvironment in obese subjects. Furthermore, p53 in human
AT was shown to be involved in insulin resistance, adipogenesis,
lipid metabolism and nutrient sensing (86).

We also previously reported the influence of obesity on the
adipocyte transcriptional program in CRC, with ObCRC subjects
showing a higher number of dysregulated genes and processes
(28). Likewise, in this study we observe a higher complexity
of ObCRC network in terms of lncRNA and miRNA profiles.
Interestingly, we describe in ObCRC patients the deregulation
of fundamental biological functions that are mainly implicated
in inflammatory signaling pathways, such as IL-37 and IL-13
signaling. In this regard, an increase expression of the cytokine
IL-13, contributing to AT inflammation, has been reported to
play an important role in obesity-related colon carcinogenesis
(87), while IL-37 signaling has been described to play an
inhibitory role in innate immune responses. In fact, it acts by
reducing systemic and local inflammation, whereas its expression
in SAT was negatively correlated with BMI (88). Other enriched
categories in ObCRC network are: (i) TGF-beta signaling that
has been reported to regulate multiple aspects of AT biology
(i.e., vascularization, inflammation and fibrosis) (89), (ii) Netrin-
1 signaling, recently described to play a role in tissue regulation
outside the nervous system, specifically in tumor development
(i.e., angiogenesis and inflammation) and (iii) PTEN regulation,
for which a dual role as tumor suppressor andmetabolic regulator
has been reported (90). Finally, the networks described in
all subject groups were enriched in: (i) type I IFN signaling,
recently identified as essential in the regulation of metabolism
and in maintaining AT function (91), (ii) SUMOylation, a post-
translational modification mechanism that plays an emerging
role in cellular metabolism and metabolic disease (92) and

(iii) pathways involved in RNA metabolism, as expected. The
identification of these pathways in both obese and cancer groups
strongly points to the local metabolic alterations in AT as key
element in colorectal carcinogenesis.

Additionally, pathways related to membrane trafficking,
vesicle budding and endocytosis processes were also found to be
dysregulated in both obesity and CRC networks. In this regard,
it is worth to note that in addition to act locally, adipocytes
influence and communicate with distant organs and tissues, by
releasing bioactive molecules, such as triglycerides, adipokines,
cytokines, and free fatty acids (93). This ability allows even
tumors with no direct contact with AT to be affected by obesity, as
indicated by epidemiological studies linking obesity with several
types of cancers (94). Among adipocytes products that could
sustain cancer cell growth, circulating miRNAs, both naked or
associated to exosomes, may regulate the function of the immune
system and distant organs and could potentially be used as
biomarkers of diagnosis and prognosis of obesity and cancer
(15). Likewise, exosomal lncRNAs have been shown to promote
angiogenesis, cell proliferation and drug resistance and can be
found in several body fluids, being highly stable, thus considered
potential tumor biomarkers (95).

In conclusion, the importance of understanding the role
of lncRNAs and miRNAs in AT of obese and CRC affected
subjects extends beyond the description of gene regulation
mechanisms. The results obtained in this study, through a
multi-omics approach and computational analysis, contribute
to the identification of candidate genes, ncRNAs and their
regulatory networks relevant to many AT biological processes,
although the direct causality remains to be established, requiring
further experimental and functional studies. Nonetheless, the
identification of AT miRNAs and lncRNAs as key components of
interrelated processes and pathways may not only better define
their role in human AT, but also identify promising mechanism-
based targets, to disrupt the relationship between obesity,
metabolic dysregulation, and cancer, potentially improving
intervention and treatment plans.
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Cancers are characterized by extensive heterogeneity that occurs intratumorally,

between lesions, and across patients. To study cancer as a complex biological system,

multidimensional analyses of the tumor microenvironment are paramount. Single-cell

technologies such as flow cytometry, mass cytometry, or single-cell RNA-sequencing

have revolutionized our ability to characterize individual cells in great detail and, with that,

shed light on the complexity of cancer microenvironments. However, a key limitation

of these single-cell technologies is the lack of information on spatial context and

multicellular interactions. Investigating spatial contexts of cells requires the incorporation

of tissue-based techniques such as multiparameter immunofluorescence, imaging mass

cytometry, or in situ detection of transcripts. In this Review, we describe the rise of

multidimensional single-cell technologies and provide an overview of their strengths

and weaknesses. In addition, we discuss the integration of transcriptomic, genomic,

epigenomic, proteomic, and spatially-resolved data in the context of human cancers.

Lastly, we will deliberate on how the integration of multi-omics data will help to shed light

on the complex role of cell types present within the human tumor microenvironment, and

how such system-wide approaches may pave the way toward more effective therapies

for the treatment of cancer.

Keywords: cancer microenvironment, single-cell, data integration, multi-omics, mass cytometry, spatial analysis,

immunophenotyping

INTRODUCTION – HETEROGENEITY OF CANCER AND NEED
FOR MULTIDIMENSIONAL APPROACHES

A genetic basis for cancer development was first proposed by the German zoologist Theodor Boveri
who speculated that malignant tumors might be the result of abnormal chromosome alterations
in cells (1). By then, a cancer cell-centric vision dominated, where tumorigenesis was thought
to be exclusively driven by multistep alterations in cellular genomes. During the last decades,
however, it has become increasingly apparent that the study of cancers must also encompass
other constituents of the cancer microenvironment including immune cells, fibroblasts, and other
stromal components, to capture all aspects of cancer biology (2). The immune system, for example,
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plays a dichotomous role in cancer development and progression,
as different cells can antagonize or promote tumorigenesis (3).
The mapping and understanding of the interplay between cancer
cells and other constituents of the cancer microenvironment is
thus fundamental for the clinical management of this disease.

The study of cancers as complex systems is further
complicated by cancer heterogeneity that can occur at
different levels; intratumorally, between lesions, and across
patients. Intratumoral heterogeneity involves the near-stochastic
generation of both genetic (e.g., mutations, chromosomal
aberrations) and epigenetic (e.g., DNA methylation, chromatin
remodeling, post-translational modification of histones)
modifications. Within tumors, distinct niches can favor
the outgrowth of different cancer cell clones that acquired
characteristics compatible with regional microenvironments
(e.g., nutrient and oxygen availability, exposure to immune cells).
Other intrinsic sources of heterogeneity such as self-renewal
of cancer cells and cell differentiation processes contribute
further to intratumoral heterogeneity (4, 5). In addition, the
immune system is a major part of the tumor microenvironment
and contains many different types of adaptive (e.g., CD4+ and
CD8+ T lymphocytes) and innate (e.g., macrophages and innate
lymphoid cells) immune cells that also contribute to cancer
heterogeneity (6). Their location within a tumor has been shown
to significantly impact their anti- or pro-tumorigenic effects (7).
In addition, the density of immune cell infiltration in tumors is
a well-known determinant for the prognosis of cancer patients
(8). Inter-lesional heterogeneity can be observed between
multiple primary tumors at time of diagnosis, between a primary
tumor and metastasis, and between different metastatic niches
in individual patients. They can be a result of the outgrowth
of subclones that can be (epi)genetically distinguished by
mutations or structural variations (9). Moreover, the structure
and composition of the cancer microenvironment can vary
between the primary tumor and metastases. Upon extravasation,
cancer cells from primary tumors are exposed to different
types of immune cells, stromal cells, platelets, and metabolic
stress, and have to adapt to the new tissue microenvironment.
As such, the metastatic tissue (“soil”) plays a critical role in
regulating the growth of metastases (“seed”) (10). Finally,
interpatient heterogeneity is, on top of the aforementioned
variables, also fueled by distinct germline genetic backgrounds
and environmental and stochastic factors that can affect cancer
progression but also immunity.

Major challenges in the field of cancer research are the
identification of predictive biomarkers to select patients that
are likely to respond to specific treatments, the detection of
mechanisms of resistance to therapy, and the development of
novel treatments to improve cancer survival. Here, we review
the rise of cutting-edge multidimensional technologies such as
spectral flow cytometry, multiparameter immunofluorescence,
(imaging) mass cytometry, single-cell RNA-sequencing (scRNA-
seq), and RNA spatial profiling that may play a crucial role
to address the former problems. We will discuss how multi-
omics of dissociated cells as well as of spatial data can be
obtained (Figure 1A) and the importance of integrating them to
reveal the full cellular landscape of the cancer microenvironment

(Figures 1B,C). For example, single-cell data of dissociated cells
can be used as guide for cell type identification in spatial data
(11) and, vice versa, spatial data can be used to predict the
location of dissociated cells based on the similarity of their
expression profiles to spatially-mapped data (12–14) (Figure 1B).
In addition, mapping can be used to predict the spatial profile of
genes or proteins which have not been experimentally measured
to expand the coverage of spatial data (Figure 1C) (15–17).

MULTIDIMENSIONAL SINGLE-CELL
TECHNOLOGIES AND THEIR STRENGTHS
AND WEAKNESSES

Single-Cell DNA- and RNA-Sequencing
Next-generation sequencing (NGS) approaches have
revolutionized our ability to generate high-throughput
genomic data where individual RNA and DNA molecules
are represented by sequencing reads thereby retaining
information on genotypes, phenotypes, cellular states, and
sub-clonal alterations. Traditional molecular profiling has,
until recently, largely relied on the analysis of bulk cell
populations. Deep sequencing of DNA and RNA from tissues
enabled reconstruction of “average” genomes and “average”
transcriptomes that could then be deconstructed by employing
bioinformatic algorithms to perform clonal evolution analysis
or determine the composition of cancer microenvironments
(18–21). For an unbiased and systematic characterization of cells,
high-throughput single-cell DNA- and RNA-sequencing have
emerged as powerful tools. With single-cell DNA-sequencing,
the genomic heterogeneity of tissues can be explored in detail.
It can be used to detect nucleotide variations and chromosomal
copy number alterations as well as more complex genomic
rearrangements and cellular fractions. Single-cell genome
sequencing involves whole-genome amplification of single cells,
of which the three main methods are MDA (22), MALBAC (23),
and DOP-PCR (24). In 2011, the first study of DNA-sequencing
of human breast cancer single cells was published (25), which
was followed by many single-cell studies charting genetic
heterogeneity within individual tumors as well as between
primary tumors and their metastases, thereby allowing for a
detailed understanding of the evolution processes occurring in a
tumor. Single-cell DNA-sequencing has myriad applications in
cancer research including examining intratumoral heterogeneity
(26–28), investigating clonal evolution during tumorigenic
processes (25, 29–32), tracing metastatic dissemination (33),
genomic profiling of circulating tumor cells (34–36), measuring
mutation rates (37), and gain insight into resistance to therapy
(38). By defining, in detail, the genetic composition of tumors,
the rationalization of targeted cancer therapies is made possible.
However, drawbacks of single-cell DNA-sequencing methods
are non-uniform coverage and allelic dropout events as well as
artifacts introduced during genomic amplification, all of which
contribute to a high rate of false negative and false positive
findings (39).

The first single-cell RNA-sequencing (scRNA-seq) experiment
was published in 2009 by Tang and colleagues who profiled the
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FIGURE 1 | Overview of the pipeline for the integration of single-cell data of dissociated cells and spatially-resolved data. (A) Single-cell data can be obtained by flow

and mass cytometry that make use of antibodies coupled to fluorochromes or heavy metal isotopes, respectively, for the immunodetection of dissociated cells. For

single-cell RNA-sequencing, antibodies coupled to oligonucleotides can be used to simultaneously retrieve information on protein and RNA expression of single cells.

Spatially-resolved data can be obtained by multiplexed imaging or spatial transcriptomics by immunodetection of tissue sections with antibodies coupled to

fluorochromes, heavy metal isotopes or oligonucleotides. Integration of single-cell data of dissociated cells with spatially-resolved data will reveal the full cellular

landscape of the cancer microenvironment. (B,C) Integration approaches for single-cell data of dissociated cells and spatially-resolved data. Single-cell data of

dissociated cells can be used as guide for cell type identification in spatial data and, vice versa, spatially-resolved data can be used to predict the location of

dissociated cells based on the similarity of their expression profiles to spatially-mapped data (B). In addition, single-cell data can be used to predict the spatial profile

of genes or proteins in the samples that have not been measured to expand the coverage of spatial data (C). Based on samples that have been measured (i.e.,

sample 1, 2, and 3), the expression of genes or proteins in sample 4, 5, and 6 can be predicted.
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transcriptome of a single cell from early embryonic development
(40). Rapid technological advances resulted in an exponential
increase in the number of cells that can be studied by scRNA-
seq analyses (41). Just 8 years later, 10x Genomics published a
scRNA-seq dataset of more than onemillion individual cells from
embryonic mice brains (42). There are many different scRNA-
seq library preparation platforms, which can be categorized
into plate-based, droplet-based, and microwell-based (41). The
selection of the method depends on the research question,
the number of input cells, the sequencing depth, the need
for full-length coverage of transcriptomes, and costs, among
others [reviewed by (43, 44)]. ScRNA-seq has demonstrated to
be a powerful technique to decipher cancer biology. In 2012,
Ramskold et al. applied scRNA-seq to study circulating tumor
cells in melanoma, and could identify potential biomarkers for
melanoma as well as SNPs and mutations in this relatively rare
circulating tumor cell population (45). Thereafter, scRNA-seq
has been used to study the microenvironment of several cancer
types including prostate cancer (46), breast cancer (47), glioma
(48–50), renal cancer (51), lung cancer (52), melanoma (53–
56), colorectal cancer (57–59), pancreatic ductal adenocarcinoma
(60), liver cancer (61), head and neck cancer (62), leukemia
(63), and glioma (64). A pioneering study that applied scRNA-
seq to primary glioblastomas uncovered inherent variability
in oncogenic signaling, proliferation, immune responses, and
regulators of stemness across cells sorted from five tumors
(48). However, this study was restricted to cancer cells and
did not further investigate other cell types of the cancer
microenvironment. Subsequently, another scRNA-seq study
examined distinct genotypic and phenotypic states of malignant,
immune, stromal, and endothelial cells of melanomas from 19
patients (53). They identified cell states linked to resistance
to targeted therapy, interactions between stromal factors
and immune cell abundance, and potential biomarkers for
distinguishing dysfunctional and cytotoxic T cells. A recent
study in colorectal cancer broadened such scRNA-seq analysis
by including a comparison of primary tumors to matched
normal mucosa samples (58). By projecting their scRNA-seq
data to a large reference panel, the authors identified distinct
subtypes of cancer-associated fibroblasts and new expression
signatures that were predictive of prognosis in colorectal cancer.
Further, scRNA-seq has been applied to investigate changes in
the tumor microenvironment of cancer patients treated with
immune checkpoint blockade to find signatures associated with
positive responses to this therapy (65, 66).

Currently scRNA-seq can be combined with sequencing of T
cell receptor and immunoglobulin repertoires thereby allowing to
connect information of B- and T cell specificity and phenotype.
High-throughput single-cell B cell receptor sequencing of more
than 250,000 B cells from different species has recently been
pioneered to obtain paired antibody heavy- and light chain
information at the single-cell level, and revealed a rapid
discovery of antigen-reactive antibody candidates (67). By a novel
approach called RAGE-seq (Repertoire and Gene Expression
by Sequencing), gene expression profiles can be paired with
targeted full-length mRNA transcripts providing BCR and TCR
sequences (68). This method has been applied to study cells

from the primary tumor and tumor-associated lymph node of
a breast cancer patient and demonstrated the ability to track
clonally related lymphocytes across tissues and link TCR and
BCR clonotypes with gene expression features (68). A limitation
of scRNA-seq is that RNA levels are not fully representative of
protein amounts. The advent of CITE-seq, REAP-seq, and Abseq
overcame this limitation by enabling simultaneous detection of
gene expression and protein levels in single cells by combining
oligonucleotide-labeled antibodies against cell surface proteins
with transcriptome profiling of thousands of single cells in
parallel (69–71). scRNA-seq, when employed in a discovery
setting, can inform on the best markers to be used for the study
of specific populations by complementary technologies such as
flow or mass cytometry. However, aspects of sample preparation
and handling have been shown to induce significant alterations
in the transcriptome (72). Furthermore, throughput is limited
by cost, protocol complexity, available sequencing depth, and
dropout events. Together, this can affect the downstream analysis
pipeline such as clustering of cell populations and the inference
of cellular relationships.

Computational analysis of scRNA-seq data is challenging
and involves multiple steps, e.g., quality control, normalization,
clustering, and identification of differentially expressed genes
and/or trajectory inferences. Multiple unsupervised clustering
analyses are available to identify putative cell types, of which
graph-based clustering is most widely used (73). For each of
these steps, numerous computational tools are available, but
in addition software packages have implemented the entire
clustering workflow such as Seurat (16), scanpy (74), and
SINCERA (75).

Single-Cell Epigenetic Characterization
Although most high-throughput profiling studies to date have
focused on DNA, RNA, and protein expression, recent progress
in studying the epigenetic regulation of gene expression,
at single-cell level, has been made. Over the last decades,
methods have been developed including ATAC-seq to measure
chromatin accessibility (76), bisulfite sequencing to measure
DNA methylation (77), ChIC-sequencing to measure histone
modifications (78), and chromosome conformation capture (3C)
to analyze the spatial organization of chromatin in a cell
(79). Several studies revealed epigenetic programs that regulate
T cell differentiation and dysfunction in tumors. Analysis of
chromatin accessibility by ATAC-seq revealed that CD8+ T
cell dysfunction is accompanied with a broad remodeling of
the enhancer landscape and transcription factor binding as
compared to functional CD8+ T cells in tumors (80–83). Also,
an increased chromatin accessibility at the enhancer site of
the PDCD1 gene (encoding for PD-1) has been found in
the context of dysfunctional CD8+ T cells (82). In addition,
studies have applied epigenetics to determine mechanisms
of resistance to cancer immunotherapies by characterizing
chromatin regulators of intratumoral T cell dysfunction before
and after PD-1, PD-L1, or CTLA-4 blockade therapy (84, 85).
Lastly, DNA hypermethylation may result in the inactivation
of genes, such as mismatch repair gene MLH1 associated with
microsatellite instability in colorectal cancer (86). Until recently,
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studies on epigenetic modifications depended on correlations
between bulk cell populations. Since 2013, with the development
of single-cell technologies, epigenomic techniques have been
modified for application to single cells to study cell-to-cell
variability in for instance chromatin organization in hundreds
or thousands of single cells simultaneously. Several single-
cell epigenomic techniques have been reported on recently,
including measurements of DNA methylation patterns (scRRBS,
scBS-seq, scWHBS) (87–89), chromatin accessibility (scATAC-
seq) (90), chromosomal conformations (scHi-C) (91), and
histone modifications (scChIC-seq) (92). A recent study applied
scATAC-seq to characterize chromatin profiles of more than
200,000 single cells in peripheral blood and basal cell carcinoma.
By analyzing tumor biopsies before and after PD-1 blockade
therapy, Satpathy et al. could identify chromatin regulators
of therapy-responsive T cell subsets at the level of individual
genes and regulatory DNA elements in single cells (93).
Interestingly, variability in histone modification patterns in
single cells have also been studied by mass cytometry, which
was denominated EpiTOF (94). In this way, Cheung et al.
identified a variety of different cell-type and lineage-specific
profiles of chromatin marks that could predict the identity of
immune cells in humans. Lastly, scATAC-seq has been combined
with scRNA-seq and CITE-seq analyses to find distinct and
shared molecular mechanisms of leukemia (95). These single-cell
strategies will allow to further understand how the epigenome
drives differentiation at the single-cell level and unravel drivers
of epigenetic states that could be used as target for the treatment
of cancer. Additionally, these methods may be used to measure
genome structure in single cells to define the 3D structure of
the genome. However, for many of these single-cell epigenetic
techniques, disadvantages are the low coverage of regulatory
regions such as enhancers (scRRBS), low coverage of sequencing
reads (scChiP-seq, scATAC-seq), and low sequencing resolution
(scHi-C) (96, 97).

Single-Cell Protein Measurements
Flow cytometry has been, in the past decades, the method of
choice for high-throughput analysis of protein expression in
single cells. The number of markers that can be simultaneously
assayed was limited to ∼14 markers due to the broad emission
spectra of the fluorescent dyes. Recent developments with
spectral flow cytometer machines enable the detection of up
to 34 markers in a single experiment by measuring the full
spectra from each cell, which are unmixed by reference spectra
of the fluorescent dyes and the autofluorescence spectrum (98).
Fluorescence emission is registered by detectors consisting of
avalanche photodiodes instead of photomultiplier tubes used
in conventional flow cytometry. A variety of cellular features
can be detected by flow cytometry including DNA and RNA
content, cell cycle stage, detailed immunophenotypes, apoptotic
states, activation of signaling pathways, and others [reviewed by
(99)]. This technique has thus been paramount in characterizing
cell types, revealing the existence of previously unrecognized
cell subsets, and for the isolation of functionally distinct cell
subsets for the characterization of tumors. However, the design of
multiparameter flow cytometry antibody panels is a challenging

and laborious task, and most flow cytometry studies have so
far focused on the in-depth analysis of specific cellular lineages,
instead of a broad and system-wide approach.

In 2009, the advent of a new cytometry methodology, mass
cytometry (CyTOF, cytometry by time-of-flight), overcame the
limitation of spectral overlap by using metal-isotope-conjugated
antibodies to detect antigens (100). The metal isotopes attached
to each cell are distinguished by mass and quantified in a
quadrupole time-of-flight mass spectrometer. A mass cytometer
is theoretically capable of detecting over 100 parameters per
cell, but current chemical methods limit its use to ∼40–50
parameters, simultaneously. Mass cytometry has expanded the
breadth of single-cell data in each experiment, making it highly
suitable for systems-level analyses such as immunophenotyping
of cancer microenvironments. By allowing the examination of
large datasets at single-cell resolution, mass cytometry can be
applied for the discovery of novel cell subsets as well as for
the detection and identification of rare cells. Further advantages
of mass cytometry are the irrelevance of autofluorescence, the
low biological background as heavy metals are not naturally
present in biological systems, and limited signal spillover between
heavy metals, thereby reducing the complexity of panel design.
Conversely, as compared to flow cytometry, mass cytometry
suffers from a higher cell loss during acquisition, is more
expensive, and is low-throughput, with a flow rate of up to 500
cells per sec as compared to thousands of cells per sec in flow
cytometry. In addition, cells cannot be sorted for further analysis
and forward- and side-scattered light is not detected.

Several studies have applied mass cytometry to further
characterize immune cell profiles in peripheral blood or tissues
from patients with breast cancer (101), renal cancer (102),
melanoma (55, 56, 103–105), lung cancer (52, 106, 107), glioma
(49, 50), colorectal cancer (57, 106, 108, 109), liver cancer (61,
110), ovarian cancer (111), and myeloma (112–115), among
others. In addition to characterizing immune cell profiles of
different tissue types, mass cytometry has also been used to
characterize immunophenotypes in tumors and monitor changes
during immunotherapy (56, 103–105, 114). In this way, factors
that influence response to immunotherapy can be investigated
and mechanisms at play during treatment can be characterized.
This information can be used to understand and facilitate the
identification and classification of responder vs. non-responders
to cancer immunotherapy. Most of the studies so far have focused
on the CTLA-4 and PD-1/PD-L1 axis of cancer immunotherapy,
but novel immunotherapeutic targets such as co-inhibitory
molecules LAG-3 or TIM-3 or co-stimulatory molecules such as
OX40 and GITR are currently being explored in mice models
and clinical trials (116). Moreover, mass cytometry has been
employed to study antigen-specific T cells with a multiplex
MHC class I tetramer staining approach, which has led to
the identification of phenotypes associated with tumor antigen-
specific T cells (106). Most studies applied mass cytometry for
measuring cell surface or intracellular markers, but it can also be
used to evaluate cell signaling processes relying on the analysis of
protein phosphorylation (117). Altogether, these studies showed
that immune responses in cancer are extremely diverse, within
tumors from individual patients as well as between patients
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with equivalent tumor types. Hence, finding clinically-relevant
characteristics based on overall differences can be challenging
because of inter-patient variability; differences between cancer
patients can be so large that they compromise the discovery
of biomarkers.

Because the number of potential phenotypes (resulting from
the combination of different markers) increases exponentially
with the rise in number of antibodies being measured
simultaneously, computational tools for the analysis and
visualization of multidimensional data have become key in this
field. Traditional workflows for analyzing flow cytometry datasets
by manual gating are not efficient to capture the phenotypic
differences in mass cytometry and complex flow cytometry
data and suffer from individual user bias. In addition, flow
and mass cytometry datasets can easily contain millions of
cells, illustrating the need for scalable clustering algorithms
for efficient analysis. Current single-cell computational tools
employed for complex flow cytometry and mass cytometry
datasets include unsupervised clustering-based algorithms such
as SPADE (118), Phenograph (119), and FlowSOM (120).
However, these clustering-based tools do not provide single-
cell resolution of the data. On the other hand, non-linear
dimensionality reduction-based algorithms such as t-SNE (121)
are widely used tools but limited by the number of cells that they
can analyze simultaneously, resulting in down-sampled datasets
and non-classified cells. Recently, a hierarchical approach of the
t-SNE dimensionality-reduction-based technique, HSNE, was
described to be scalable to tens of millions of cells (122, 123). In
addition, a novel algorithm has recently been implemented in the
single-cell analysis field as a dimensionality reduction tool, called
uniform manifold approximation and projection (UMAP) (124).

Spatially-Resolved Data
Most of the multidimensional single-cell techniques such as
flow cytometry, mass cytometry, and scRNA-seq require cellular
dissociation to obtain cell suspensions prior to measuring the
individual cells. Different dissociation methods are used, both
mechanical and enzymatic, and may result in the loss of certain
cell types and affect the expression of specific cell surfacemarkers.
Moreover, tissue specimens are often contaminated with blood
or other tissues that are processed along with the tissue of
interest. As such, not all subsets identified in single-cell data
may be representative of the sample of interest. Another key
limitation is the lack of information on spatial localization
and cellular interactions within a tissue. Analysis of tissue
sections by traditional IHC- and immunofluorescence-based
methods are useful in providing spatial information (125), but
are severely limited in the number of markers that can be
measured simultaneously. Recent technological advances have
greatly expanded the number of markers that can be captured
on tissue slides. For instance, by applying the principles of
secondary ion mass spectrometry to image antibodies conjugated
to heavy metal isotopes in tissue sections with imaging mass
cytometry (IMC) (126) and multiplexed ion beam imaging by
time-of-flight (MIBI-TOF) (127). In both imaging approaches,
conventional IHC workflows are used but with metal-isotope-
conjugated antibodies that are detected through a time-of-flight

mass spectrometer. In IMC, a pulsed laser is used to ablate a
tissue section by rasterizing over a selected region of interest. The
liberated antibody-bound ions are subsequently introduced into
the inductively coupled plasma time-of-flight mass spectrometer.
IMC can currently image up to 40 proteins with a subcellular
resolution of 1µm. The principle of MIBI-TOF is similar, but
it makes use of a time-of-flight mass spectrometer equipped
with a duoplasmatron primary oxygen ion beam rather than a
laser. It currently enables simultaneous imaging of 36 proteins at
resolutions down to 260 nm (128). Both techniques are, however,
low-throughput due to the relatively long imaging time of 2 h per
field of 1 mm2 in IMC and 1 h 12min per field of 1 mm2 in MIBI-
TOF (129). IMC has been applied to study tumor heterogeneity
in several types of cancers, such as pancreatic cancer (130), biliary
tract cancer (131), breast cancer (126, 132, 133), and colorectal
cancer (108, 134). MIBI-TOF has been used to study the tumor-
immune microenvironment of breast cancer (127, 128, 135, 136)
and the metabolic state of T cells in colorectal cancer (109).
These spatially-resolved, single-cell analyses have great potential
to characterize the spatial inter- and intratumoral phenotypic
heterogeneity, which can guide cancer diagnosis, prognosis and
the selection of treatment. A recent study was able to extend
IMC data by integration with genomic characterization of breast
tumors and could, in this way, investigate the effect of genomic
alterations on multidimensional tumor phenotypes of breast
cancer (137).

Other multiplexed imaging techniques such as the Digital
Spatial Profiling (DSP) system fromNanoString and co-detection
by indexing (CODEX) make use of DNA oligonucleotides. In
DSP, antibodies or probes are tagged with unique ultraviolet-
photocleavable DNA oligos that are released after ultraviolet
exposure in specific ROIs and quantified (138). It enables
simultaneous detection of up to 40 proteins or over 90 RNA
targets from a tissue section and theoretically allows unlimited
multiplexing using the NGS readout, but is time-consuming,
does not allow for a reconstruction of the image, and has a lower
resolution (10µm) (129). In CODEX, antibodies conjugated to
unique oligonucleotide sequences are detected in a cyclic manner
by sequential primer extension with fluorescent dye-labeled
nucleotides. CODEX currently allows the detection of over 50
markers with an automated fluidic setup platform including a
three-color fluorescence microscope (139). Of note, throughput
is limited by sequential detection of antibody binding. A
disadvantage of CODEX, but also of IMC, is the lack of signal
amplification which hampers the detection of lowly abundant
antigens. A novel imaging technique, called Immuno-SABER,
overcame this limitation by implementing a signal amplification
step using primer exchange reactions. Immuno-SABER makes
use of multiple DNA-barcoded primary antibodies that are
hybridized to orthogonal single-stranded DNA concatemers,
generated via primer exchange reactions (140). These primer
exchange reactions allow multiplexed signal amplification with
rapid exchange cycles of fluorophore-bearing imager strands.
The Nanostring DSP platform has been used to study the tumor
microenvironment and the outcome of various clinical trials
of combination therapy for melanoma (141–144), interactions
between macrophages and lymphocytes in metastatic uveal
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melanoma (145), immune cell subsets in lung cancer (129, 143),
and tumormicroenvironments of different metastases in prostate
cancer (146). CODEX has been applied to study the immune
tumor microenvironment of colorectal cancer patients with 56
protein markers simultaneously (147).

These multiplexed imaging techniques can be applied to
snap-frozen as well as FFPE samples that are usually stored in
clinical repositories. However, they raise new analysis challenges
such as the visualization of 40 markers simultaneously, the
image segmentation for cell determination, and algorithms
for image-based expression profiles. To understand the tissue
architecture, it is necessary to have prior knowledge on which
cell types can be present and what their physical relationship
to one another could be. Several computational approaches
have been developed to enable data analysis of spatially-resolved
multiplexed tissue measurements including HistoCAT (148) and
ImaCytE (149). These approaches apply cell segmentation masks
[using a combination of Ilastik (150) and CellProfiler (151)] to
extract single-cell data from each image, which allow for deep
characterization using multidimensional reduction tools such
as t-SNE combined with the assessment of spatial localization
and cellular interactions. In addition to cell-based analysis such
imaging technologies also allow the employment of pixel-based
analysis that do not depend on cell segmentation.

Integration of single cell transcriptome profiles with their
spatial position in tissue context can be achieved by labeling
of DNA, RNA, or probes using in situ hybridization (ISH).
Traditional ISH techniques have been improved to allow
the detection of single molecules, named single-molecule
fluorescence ISH (smFISH) that can be used to quantitate
RNA transcripts at single-cell resolution within a tissue context
(152, 153). However, only a small number of genes can be
measured simultaneously and a main limitation is the lack of
cellular resolution to hundreds of micrometers. To improve
the throughput, several highly multiplex methods of in situ
RNA visualization have been developed such as osmFISH (154),
sequential FISH [seqFISH (155) and seqFISH+ (156)] and error-
robust FISH [MERFISH (157)]. These allow the subcellular
detection of 100–10,000 transcripts simultaneously in single
cells in situ by using sequential rounds of hybridization with
temporal barcodes for each transcript, but require a high
number of probes and are time-consuming. Furthermore, ISH
can suffer from probe-specific noise due to sequence specificity
and background binding. Another approach which may be
more applicable for tumors is in situ RNA sequencing on
tissue sections. STARmap (158) and FISSEQ (159) can profile
a few hundreds to thousands of transcripts by using enzymatic
amplification methods, but at lower resolution and sensitivity
compared to seqFISH and MERFISH. Spatial Transcriptomics
(160) and Slide-seq (161) can profile whole transcriptomes
by using spatially barcoded oligo-dT microarrays. The spatial
transcriptomics method has been used to study and visualize
the distribution of mRNAs within tissue sections of breast
cancer (160, 162), metastatic melanoma (56, 163), prostate cancer
(164), and pancreatic cancer (165). These studies highlight
the potential of gene expression profiling of cancer tissue
sections to reveal the complex transcriptional landscape in its

spatial context to gain insight into tumor progression and
therapy outcome.

INTEGRATION OF TRANSCRIPTOMIC,
(EPI)GENOMIC, PROTEOMIC, AND
SPATIALLY-RESOLVED SINGLE-CELL
DATA

Traditionally, each type of single-cell data has been considered
independently to investigate a biological system. However, cancer
is a spatially-organized system composed of many distinct cell
types (Figure 2A). These different cell types including immune
cells, stromal cells, and malignant cells can be visualized and
investigated in an interactive manner (Figure 2B). By applying
multi-omics to individual cells in the cancer microenvironment,
the molecular landscape of every cell (44) can be defined with
its proteome (proteins), transcriptome (RNA sequence), genome
(DNA sequence), epigenome (DNA methylation, chromatin
accessibility), and spatial localization (x, y, z-coordinates)
(Figure 2C). Integrating these different molecular layers for
each cell will allow a detailed profiling of cancer as a complex
biological system (Figure 2D). Data integration approaches have
classically been categorized in three groups: early (concatenation-
based), intermediate (transformation-based), and late (model-
based) stage integration (166). Early or intermediate stage
integration approaches are more powerful than late stage
integration since they can capture interactions between different
molecular data-types. However, such approaches are also
more challenging methodologically given the different data
distributions across data types.

A number of studies have used complementary forms of
multidimensional analysis on the same sample type in the context
of cancer. We have performed a search strategy in PubMed,
Web of Science, and Embase databases to find studies that
have used mass cytometry in concert with scRNA-seq in the
context of human cancer (Supplementary Table 1). An overview
of the eight relevant studies that applied mass cytometry together
with scRNA-seq to study human cancer and their integration
stage is shown in Table 1. In addition, we performed a search
strategy in PubMed, Web of Science, and Embase databases
on studies that applied single-cell mass cytometry in concert
with spatially-resolved data obtained by IMC or MIBI-TOF in
human cancer (Supplementary Table 1). An overview of the two
relevant studies and their integration stage is shown in Table 2.
Notably, all different multidimensional datasets in these studies
were analyzed separately and follow a late (model-based) stage
integration. Only Goveia and colleagues applied an integration
of clustered mass cytometry and scRNA-seq data (107). They
merged scaled average gene expression data for each scRNA-
seq cluster with scaled average protein expression data for each
CyTOF cluster, an approach based on a recently described
method from Giordani et al. (167). As they integrated the data
only after clustering eachmodality separately, it is still considered
late stage integration.

Integrating multiple single-cell datasets is a challenging task
because of the inherently high levels of noise and the large
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FIGURE 2 | An integrated multicellular model of cancer. (A) From cells in a spatially-organized cancer microenvironment to (B) a three-dimensional view of individual

cells. (C) From each individual cell in the cancer microenvironment, protein expression can be measured by single-cell protein analysis, RNA expression by single-cell

RNA analysis, DNA and chromatin expression by single-cell (epi)genome analysis, and the x, y, z-coordinates with spatially-resolved analysis. (D) Integrating all four

molecular layers for each cell will allow a detailed profiling from individual cell-to-cell interactions to whole tissue context.

amount of missing data. Furthermore, the ever-expanding scale
of single-cell experiments to millions of cells poses additional
challenges. Several methods have been proposed to integrate
multimodal single-cell data. State-of-the-art methods focus on
embedding both spatial and standard datasets into a latent space
using dimensionality reduction, such as Seurat (16), LIGER (17),
and Harmony (168), or by employing factor analysis, such as
MOFA (169), MOFA+ (170), scMerge (171), and scCoGAPS
(172). In addition, a recent study introduced gimVI as a model
for integrating spatial transcriptomics data with scRNA-seq
data to impute missing gene expression measurements (15).
Of note, most of the methods so far follow an intermediate

or late integration approach (166). As such, these methods
overcome challenges due to the different data distributions across
data types, but they are less powerful in capturing interactions
between different molecular data types.

Several methodologies have been developed to simultaneously
acquire multiple measurements from the same cell (Box 1).
Although obtaining simultaneous measurements from the same
cell is becomingmore feasible, it is still more common to perform
subsequent measurements from the same sample (different
sets of cells). Integrating spatial-based assays with mRNA or
protein expression measurements can be beneficial for several
reasons. For instance, spatial measurements are often limited in
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TABLE 1 | Overview of studies applying mass cytometry together with single-cell RNA-sequencing to study human cancer heterogeneity.

References Methods for single-cell profiling Cancer type Integration stage

Lavin et al. 2017 (52) Mass cytometry and scRNA-seq Lung cancer Late

De Vries et al. 2019 (57) Mass cytometry and scRNA-seq Colorectal cancer Late

Zhang et al. 2019 (61) Mass cytometry and scRNA-seq Liver cancer Late

Sankowski et al. 2019 (49) Mass cytometry and scRNA-seq Glioma Late

Halaby et al. 2019 (55) Mass cytometry and scRNA-seq Melanoma Late

Goswami et al. 2020 (50) Mass cytometry and scRNA-seq Glioblastoma Late

Goveia et al. 2020 (107) Mass cytometry and scRNA-seq Lung cancer Late

Helmink et al. 2020 (56) Mass cytometry and scRNA-seq Melanoma Late

scRNA-seq, single-cell RNA-sequencing.

TABLE 2 | Overview of studies applying mass cytometry together with imaging mass cytometry or MIBI-TOF to study human cancer heterogeneity.

References Methods for single-cell profiling Cancer type Integration stage

Zhang et al. 2019 (108) Mass cytometry and IMC Colon cancer Late

Hartmann et al. 2020 (109) Mass cytometry and MIBI-TOF Colorectal cancer Late

IMC, imaging mass cytometry; MIBI-TOF, multiplexed ion beam imaging by time-of-flight.

terms of the number of features they can assess simultaneously,
although the latest generations ofMERFISH and seqFISH(+) can
measure around 10,000 transcripts per cell. By integrating these
imaging techniques with scRNA-seq, the amount of biologically-
relevant information can be enhanced. Moncada et al. presented
an integration of scRNA-seq with the spatial transcriptomics
method generated from the same sample to study pancreatic
cancer (165). A clear challenge when integrating spatial protein
(e.g., IMC, MIBI-TOF, CODEX) with scRNA-seq data is the need
to model relationships between mRNA and protein expression
levels, thus adding an extra layer of complexity. The advent
of CITE-seq, combining antibody-based detection of protein
markers with transcriptome profiling, could be used to bridge this
gap since it allows simultaneous measurement of both mRNA
and surface protein marker expression. We foresee an important
role for CITE-seq data in the integration of IMC, MIBI-TOF,
and CODEX spatial data with scRNA-seq data. Recently, the
integration of CITE-seq with CODEX as well as with IMC has
been pioneered by Govek et al. (173).

POTENTIAL AVENUES OF HOW THE
INTEGRATED DATA WILL HELP TO SHED
LIGHT ON THE COMPLEX ROLE OF THE
MICROENVIRONMENT IN CANCER

Cancer heterogeneity has long been recognized as a factor
complicating the study and treatment of cancer but, until
recently, it was difficult to account for in cancer research.
The advent of multidimensional single-cell technologies has
shed light on the tremendous cellular diversity that exists
in cancer tissues and heterogeneity across patients. Moving
forward, it will be important to work on the integration of
available (spectral) flow cytometry, mass cytometry, scRNA-seq,

and spatially-resolved datasets to investigate commonalities and
differences in cellular landscapes between cancer tissues.Multiple
flow andmass cytometry datasets can bematched if they include a
shared marker set between panels, thereby extending the number
of markers per cell and allowing meta-analysis of different mass
cytometry datasets with a common core of markers (174). In
addition, cell-type references from different single-cell datasets
can improve the functional characterization of cells (175). Such a
system-wide approach will improve insights into how different
components of the cancer microenvironment interact in a
tissue context. This requires an extensive collaboration between
multi-disciplinary research fields such as oncology, immunology,
pathology, and bioinformatics.

Nevertheless, the development and widespread use of
innovative methodologies also implies the development of
analytical tools for the interpretation of complex datasets and
their standardization across laboratories. Furthermore, systems-
level analyses challenge a researcher’s capacity to reconnect
findings to their biological relevance. Studies should focus on the
removal of unwanted variation and experimental noise in high-
throughput single-cell technologies as well as the development of
cell-type references, such as the Human Cell Atlas (176) and the
Allen Brain Atlas (177) principles. We need to further develop
algorithms to integrate data from different imaging and non-
imaging single-cell technologies. Alternatively, technological
developments should allow the acquisition of molecular profiles
from single cells without the need of dissociating them from
their tissue context. Lastly, it would be of great value to correlate
multi-omics techniques with cell-to-cell signaling networks such
as CellPhoneDB (178) and NicheNet (179). We expect that
this integrated and comprehensive data can be used to create
a multicellular model of cancer, from single cells to its tissue
context, to understand and exploit cancer heterogeneity for
improved precision medicine for cancer patients.
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BOX 1 | Methods for the integration of transcriptomic, (epi)genomic, and

proteomic single-cell data.

The analysis of protein expression has been extended to include transcript

measurements at the single-cell level. CITE-seq (69), REAP-seq (70),

and PLAYR (180) can be used to detect mRNA and protein levels

simultaneously in single-cells. In CITE-seq and REAP-seq, oligonucleotide-

labeled antibodies are used to integrate cellular protein and transcriptome

measurements. In PLAYR, mass spectrometry is used to simultaneously

analyze the transcriptome and protein expression levels. The analysis of

mRNA expression and methylation status in single cells can be achieved by

scM&Tseq (181). In addition, mRNA expression and chromatin accessibility of

single cells can be analyzed by sci-CAR (182), SNARE-seq (183), and Paired-

seq (184). Chromatin organization and DNAmethylation from a single nucleus

can jointly be profiled by snm3C-seq (185). DR-seq (186) and G&T-seq (187)

can assay genomic DNA andmRNA expression simultaneously in single cells,

allowing correlations between genomic aberrations and transcriptional levels.

Moreover, recent studies have reported on the development of single-cell

triple-omics sequencing techniques, such as scTrio-seq (188) and scNMT-

seq (189). In scTrio-seq, the transcriptome, genome, and DNA methylome

of individual cells are jointly captured. Lastly, scNMT-seq jointly profiles

transcription, DNA methylation, and chromatin accessibility, allowing for a

thorough investigation of different epigenomic layers with transcriptional

status.

How will such system-wide approaches contribute toward
more effective therapies for the treatment of cancer? With the
advent of targeted therapy and immunotherapy, remarkable
advances have been made that changed the management of
oncologic treatment for a significant number of patients.
However, still only a minority of cancer patients benefit from
these therapies, and resistance to treatment remains a major
complication in the clinical management of advanced cancer
patients. Integrated multi-omics data can help to improve
our understanding of the variability in treatment response

and resistance mechanisms. By linking detailed molecular and
immunological profiles of cells in the cancer microenvironment

with sensitivity to specific therapies, potential targets for cancer
treatments and associated biomarkers can be identified. This

would also support a rational selection of patients that are
most likely to benefit from specific treatments. Furthermore,
integrated multi-omics data has the potential to guide the
development of alternative therapies, for instance through the
identification of resistance mechanisms. We expect that such
system-wide approaches, with technologies that include spatial
information, will become standard methodologies in cancer
research in the coming years.
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Background: Tumor models are critical for our understanding of cancer and the

development of cancer therapeutics. The 4T1 murine mammary cancer cell line is one

of the most widely used breast cancer models. Here, we present an integrated map of

the genome, transcriptome, and immunome of 4T1.

Results: We found Trp53 (Tp53) and Pik3g to be mutated. Other frequently mutated

genes in breast cancer, including Brca1 and Brca2, are not mutated. For cancer related

genes, Nav3, Cenpf, Muc5Ac, Mpp7, Gas1, MageD2, Dusp1, Ros, Polr2a, Rragd, Ros1,

and Hoxa9 are mutated. Markers for cell proliferation like Top2a, Birc5, and Mki67 are

highly expressed, so are markers for metastasis like Msln, Ect2, and Plk1, which are

known to be overexpressed in triple-negative breast cancer (TNBC). TNBC markers are,

compared to a mammary gland control sample, lower (Esr1), comparably low (Erbb2),

or not expressed at all (Pgr). We also found testis cancer antigen Pbk as well as

colon/gastrointestinal cancer antigens Gpa33 and Epcam to be highly expressed. Major

histocompatibility complex (MHC) class I is expressed, while MHC class II is not. We

identified 505 single nucleotide variations (SNVs) and 20 insertions and deletions (indels).

Neoantigens derived from 22 SNVs and one deletion elicited CD8+ or CD4+ T cell

responses in IFNγ-ELISpot assays. Twelve high-confidence fusion genes were observed.

We did not observe significant downregulation of mismatch repair (MMR) genes or

SNVs/indels impairing their function, providing evidence for 6-thioguanine resistance.

Effects of the integration of the murine mammary tumor virus were observed at the

genome and transcriptome level.

Conclusions: 4T1 cells share substantial molecular features with human TNBC. As

4T1 is a common model for metastatic tumors, our data supports the rational design of

mode-of-action studies for pre-clinical evaluation of targeted immunotherapies.

Keywords: immunotherapy, cancer models, computational immunology, triple negative breast cancer, 4T1 murine

mammary gland tumor cell line
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INTRODUCTION

The translational value of pre-clinical cancer studies is dependent
on the availability of model systems that mimic the situation
in the patient. The murine mammary carcinoma cell line
4T1 is widely used as syngeneic tumor model for human
breast cancer [e.g., (1–3)], a tumor entity with the world-wide
highest incidence1. This cell line was originally derived from a
subpopulation of a spontaneously arising mammary tumor of a
mouse mammary tumor virus (MMTV) positive BALB/c mouse
foster nursed on a C3H mother (BALB/BfC3H) (4, 5). 4T1 can
easily be transplanted into the mammary gland and was already
described as poorly immunogenic, highly tumorigenic, invasive,
and spontaneously metastasizing to distant organs (6). Thus, the
location of the primary tumor and its metastatic spreading closely
resemble the clinical course in patients. Moreover, 4T1 cells
are used to specifically investigate triple-negative breast cancer
(TNBC) [e.g., (7–9)] lacking protein expression of estrogen
receptor (ER), progesterone receptor (PgR), and epidermal
growth factor receptor 2 (ErbB2) (10). This triple-negative
phenotype is estimated for more than 17% of breast cancers that
are annually diagnosed (11).

In spite of being such a widely used system, until now
mainly phenotypic characteristics of 4T1 have been compared
to human (triple-negative) breast cancer in the literature, while
no comprehensive genomic, transcriptomic, and immunomic
overview has been provided that would complement the
evaluation of 4T1 as adequate breast cancer or even TNBCmodel.
In our study, we examined the 4T1 cell line from a multi-omic
point of view to complete the picture.

MATERIALS AND METHODS

Samples
BALB/cJ mice (Charles River) were kept in accordance with legal
and ethical policies on animal research. The animal study was
reviewed and approved by the federal authorities of Rhineland-
Palatinate, Germany and all mice were kept in accordance with
federal and state policies on animal research at the University of
Mainz and BioNTech SE. Germline BALB/cJ DNA was extracted
frommouse tail. 4T1WT cells were purchased fromATCC. Third
and 4th passages of cells were used for tumor experiments.

Data
ENCODE RNA Sequencing data of adult BALB/c mammary
gland tissue for differential expression analysis against 4T1
expression profiles was downloaded from the UCSC Genome
Browser (12) repository:

• URL: http://hgdownload.cse.ucsc.edu/goldenPath/mm9/
encodeDCC/wgEncodeCshlLongRnaSeq

• Files:
wgEncodeCshlLongRnaSeqMamgAdult8wksFastqRd1Rep1.fa
stq.tgz
wgEncodeCshlLongRnaSeqMamgAdult8wksFastqRd1Rep2.fa
stq.tgz

1http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf

wgEncodeCshlLongRnaSeqMamgAdult8wksFastqRd2Rep1.fa
stq.tgz
wgEncodeCshlLongRnaSeqMamgAdult8wksFastqRd2Rep2.fa
stq.tgz

Female BALB/c RNA-Seq data sets for the comparison of
the MHC expression were described before (13) and are
available in the European Nucleotide Archive (see Data
Availability Statement).

High-Throughput Sequencing and Read
Alignment
Exome capture from 4T1 and BALB/cJ mice were sequenced
in duplicate using the Agilent Sure-Select solution-based mouse
protein coding exome capture assay. 4T1 oligo(dT)-isolated
RNA for gene expression profiling was prepared in duplicate.
Libraries were sequenced on an Illumina HiSeq2500 (2 × 50
nt). DNA-derived sequence reads were aligned to the mm9
genome using bwa [(14); default options, version 0.5.9_r16].
Ambiguous reads mapping to multiple locations of the genome
were removed. RNA-derived sequence reads were aligned to the
mm9 genome using STAR [(15); default options, version 2.1.4a].
The sequencing reads are available in the European Nucleotide
Archive (see Data Availability Statement).

Mutation Detection
Somatic SNV and short insertion/deletion (indel) calling was
performed using Strelka [(16); default options for whole exome
sequencing, version 2.0.14] on each cell line or normal library
replicate pair individually. The individual analysis runs resulted
in 1,115 and 1,108 SNV candidates, with an overlap of 886 SNVs
(66%) and in 60 and 58 indel candidates, with an overlap of
50 (74%).

Transcriptome Profiling
Transcript abundance estimation was done with kallisto [(17);
default options, version 0.42.4] on each cell line or normal sample
library replicate individually using the mean transcripts per
million (TPM) per transcript final value. Differential expression
analysis was performed with edgeR [(18); default options,
version 3.26.8] using the reported transcript counts of kallisto,
summarized by adding up the counts of the respective transcripts
associated with each gene. The TPM values of the technical
replicates have a Pearson’s correlation coefficient of more
than 0.99. Enriched pathways (KEGG 2019 Mouse2) and gene
ontologies (GO Biological Process 20183) in differentially up- or
downregulated genes were determined using Enrichr (19). The
associated Enrichr libraries were used as background lists for
comparison with enrichment analysis in TNBC subtypes (20).

2https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&

libraryName=KEGG_2019_Mouse
3https://amp.pharm.mssm.edu/Enrichr/geneSetLibrary?mode=text&

libraryName=GO_Biological_Process_2018
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Data from human TNBC studies (20–22) was obtained from
the respective journal websites4,5,6. Data formapping human and
mouse gene symbols was obtained from the Jackson Laboratory7.
TNBC and breast tissue short read data in fastq format was
obtained from the short read archive (TNBC: accession number
PRJNA607061, sample accession numbers are documented in
Table S7).

TCGA BRCA expression values for ERBB2, ESR1, and
PGR was obtained from the UCSC Xena browser (http://
xena.ucsc.edu), using the “HTSeq FPKM-UQ” dataset.
The clinical annotation including immunohistochemistry
results was downloaded from the GDC Legacy site8. These
tables were merged using the patient barcodes keeping only
patients with non-missing and non-inconclusive results for the
immunohistochemistry status of “Her2”, “Pr”, and “Esr”. This
resulted in 808 data points. Principal component analysis was
done in R with the “prcomp” function.

Fusion Gene Detection
Fusion genes were detected with an in-house pipeline: We
employed the “wisdom of crowds” approach (23), and applied
four fusion detection tools, SOAPFuse, MapSplice2, InFusion
and STARFusion (23–26) to two technical replicates of the 4T1
cell line. We used Ensembl GRCm38.95 as reference. SOAPFuse
and STARFusion were run with default parameters, MapSplice2
was run with “–qual-scale phred33 –bam –seglen 20 –min-map-
len 40” as additional parameters, and InFusion was run with “–
skip-finished –min-unique-alignment-rate 0 –min-unique-split-
reads 0 –allow-non-coding” as additional parameters. For run
time improvement, we did a first manual pass of a STAR
alignment to the mm10 reference genome and retained only non-
matching and chimeric reads for further processing by the four
fusion detection tools. In order to combine the eight resulting
datasets (four tools applied to two replicates) we first created the
union of results of all four tools for each replicate, followed by the
intersection of both independent runs (one per replicate cell line
RNA library). This was considered as high confidence result set.

DNA Copy Number Calling
Absolute copy numbers were detected from exome capture
data using Control-FREEC [(27), version 11.5]. Control-FREEC
was run multiple times with different ploidy input parameters
(ploidy = x for values of x = 2, 3, 4, or 5) on the merged
alignment files (merged with the “merge” command from
samtools). In addition, the following non-default parameters
were set: forceGCcontentNormalization = 1, intercept = 0,
minCNAlength = 3, sex = XX, step = 0, uniqueMatch = TRUE,
contaminationAdjustment= FALSE.

4https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911051/bin/pone.0157368.

s007.xlsx
5http://downloads.hindawi.com/journals/bmri/2018/2760918.f1.docx
6https://static-content.springer.com/esm/art%3A10.1186%2Fs13058-016-0690-

8/MediaObjects/13058_2016_690_MOESM1_ESM.docx
7http://www.informatics.jax.org/downloads/reports/

HOM_MouseHumanSequence.rpt
8file URL: https://portal.gdc.cancer.gov/legacy-archive/files/735bc5ff-86d1-421a-

8693-6e6f92055563

The CNV calls were processed with custom Python and R
scripts: The output segment copy numbers were assigned to gene
symbols by intersection with gene coordinates. Using the gene
symbols, the previously detected SNVs were mapped to the copy
numbers. Computed variant allele frequencies (VAF) from read
alignments were then compared to the expected allele frequency
distribution based on discrete copy numbers. For e.g., for a copy
number of 3 (as predicted by Control-FREEC), one would expect
SNV VAFs in associated genes clustered around values of 0.33
(one allele mutated), 0.66 (two alleles mutated), and 1 (three
alleles mutated). The best match was manually determined for
a Control-FREEC ploidy value of 5.

Transcript Assembly
RNA-Seq transcript assembly was done using trinity [(28);
default options, version r20140413p1]. Assembled transcript
contigs were mapped to human transcript sequences and the
MMTV genome (GenBank accession number NC_001503.1)
with blat (29).

MHC Typing
MHC type of the 4T1 cells was determined from RNA-Seq reads
as described in Castle et al. (13).

MHC Expression
MHC expression was quantified using Sailfish [(30); default
options, version 0.6.2] on an mm9 transcriptome index which
represents C57BL/6 mice, combined with the expected BALB/cJ
MHC sequences.

Mutation Signatures
Mutation signatures (31) were computed with the R package
YAPSA (default settings, version 1.4.0).

Expression Profiling of Viral Genes
Virus genomes were downloaded in FASTA format from the
NCBI Virus Genomes resource (32). Sequence reads were aligned
using STAR [(15); version 2.5] to a combined reference genome
containing murine genome sequences (mm9) and 7,807 virus
genomes. We used a maximum mismatch ratio of 0.2, reporting
ambiguous alignments only when the alignment scores matched
the best alignment of the read.

For each of the virus accession numbers, the GenBank features
“mRNA” and “CDS” were extracted from NCBI sources to
create a virus gene database for expression analysis. Taxonomic
information was extracted for filtering closely related viruses with
lower read counts.

Viral gene expression was calculated using the built virus
gene database and an in-house software as previously described
(33). Any read overlapping a union model of all of a gene’s
isoforms was counted. All read counts were normalized to reads
per kilobase of genemodel per millionmapped reads (RPKM) for
all murine and viral genes.

Neoantigen Selection for Immunogenicity
Testing
The selection for the initial immunogenicity assessment was
described earlier (34). For the subsequent testing of 11 additional
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4T1-WT SNVs, the following more strict criteria were applied:
(i) present in both replicates, (ii) hitting a transcript outside the
untranslated region (UTR), (iii) resulting in a non-synonymous
amino acid exchange (no stop gain or loss), (iv) mean expression
in replicates > 0, (v) VAF in 4T1 DNA > 0, (vi) VAF in 4T1 RNA
> 0.1, and (vii) VAF in RNA of an independent control mammary
gland sample was 0. Indels were selected accordingly, but with a
less stringent filter on the variant allele frequency in the tumor
RNA (VAF_in_RNA > 0). Indels were subjected to confirmation
via Sanger sequencing [performed as in (34)] which left two of
the three pre-filtered indels for further experiments.

Immunogenicity Testing
The immunogenicity assessment of SNV-derived neoantigens
was performed as described earlier (34). For the testing of indel-
derived mutated peptides, mice (n = 3) were vaccinated with
repetitive intravenous injections of 40 µg RNA lipoplexes (35)
on days 0, 7, and 14. Five days after the last immunization,
splenocytes of mice were tested for recognition of 15-mer
peptides spanning the complete mutated sequence (11 amino
acid overlap). T-cell responses were measured via IFN-γ enzyme-
linked immunospot assay (ELISpot) as previously described
(34). In brief, 5 x 105 splenocytes were stimulated overnight
by addition of 2µg/mL peptide at 37◦C in anti-IFN-γ
(10µg/mL, clone AN18, Mabtech) coated Multiscreen 96-well
plates (Millipore) and cytokine secretion was detected with
an anti-IFN-γ antibody (1µg/mL, clone R4-6A2, Mabtech).
For subtyping of T-cell responses, CD8+ T cells were isolated
from splenocytes via magnetic-bead based cell separation
[Miltenyi Biotech, CD8a (Ly-2) MicroBeads] according to
the manufacturer’s recommendations. CD8+ T cell-depleted
splenocytes served as a source for CD4+ T cells. 1.5 × 105

isolated CD8+ T cells and 5 × 105 cells derived from the CD4+

T cell containing flow-through were restimulated in an IFN-γ
ELISpot as described above. 1 × 105 syngeneic bone marrow
derived-dendritic cells (34) served as antigen-presenting cells for
CD8+ T cells.

RESULTS

The 4T1 Tumor Genome
Using whole exome and RNA-Seq data, we assessed genomic
variation patterns by comparing 4T1 to BALB/c DNA, examining
copy number aberrations, indels, SNVs, and gene fusions.
Moreover, we determined absolute DNA copy numbers.

No reads mapped to Y chromosome (DNA or RNA), which is
expected as 4T1 originated from a female mouse. The analysis of
the copy number profile revealed a median gene copy number of
four, suggesting a tetraploid genome, although a sizable fraction
of the genome seemed to be present in five copies (Figure 1A,
second circle from the outside; Table S1). The findings were
confirmed by a good agreement between the observed SNV
allele frequencies and the allele frequency profile expected by the
predicted gene copy number (e.g., for a copy number of four we
expected SNV VAFs to be clustered around the values of 0.25,
0.5, 0.75, and 1). We observed known breast cancer oncogenes
Akt1 and Sf3b1 (36) with focal amplifications (copy number six

and seven, respectively), while pan-cancer oncogene Myc had
a copy number of 11 (Table S1). Several known human tumor
suppressor genes had a predicted copy number of less than four,
with a possible functional impact (Table S1).

We identified 505 SNVs (Table S2, Figure 1A, outer circle,
gray) and 20 short indels (Table S3, Figure 1A, outer circle, red)
in transcripts, as well as 12 fusion events (Table S4, Figure 1A,
middle). The majority of SNVs caused non-synonymous protein
changes outside UTRs (264; 52%) including 248 missense and
16 non-sense variations (15 premature stops and one stop
loss). Relative to the mouse genome (32 million protein-coding
nucleotides), the 4T1 variation rate was 1.1 mutations per MB,
which is within the range observed for human breast cancer (31).
This number is an order of magnitude lower compared to the
murine colon cancer model CT26, which suggests that CT26
is more likely to encode immunogenic epitopes than 4T1. The
observed difference in the mutational load was in agreement
with previous studies (37, 38), even though we detected a
higher number of somatic mutations in both tumor models.
We confirmed 45 of 47 (96%) and 193 of 246 (78%) previously
reported SNVs in our data. Of the 264 non-synonymous SNVs,
we found 91 (34%) mutations to be expressed (VAF > 0),
which is comparable with a study in human TBNC that found
∼36% of mutations to be expressed (39). We have recently
shown a high correlation between the DNA and RNA mutation
allele frequencies in three murine tumor models (including 4T1)
(13). Here, using updated methods for transcript quantification
and mutation calling, we were able to reproduce these results
(R2 = 0.98, Figure S1), thus further corroborating that genes are
equally transcribed from all alleles, mutated and wild-type (WT),
in proportion to their DNA allele frequency.

Examining the mutational landscape in the 4T1 exome
(Figure 1B), we found a higher prevalence of C>T, C>G,
and C>A SNVs (Figure S2), which is in concordance with
the somatic mutational signatures in human breast cancers
(40). Interestingly, we found an overrepresentation of C>T
transitions at XCG triplets (Figure S2; C is the mutated base,
preceded by any nucleotide and followed by G), which is a
knownmutational mechanism due to deamination of methylated
cytosines to thymine and has been observed in human breast
cancers (41). C>T transitions showed the largest contribution
to the mutational signatures in 4T1 and has been attributed to
the activity of the APOBEC family of cytidine deaminases (42).
Of note, Apobec3 has been found to provide partial protection
in mice against infection with the oncogenic retrovirus MMTV
(43), suggesting activation of this gene during MMTV infection
and genome integration with subsequent cytosine deamination,
resulting in the observed mutation pattern. The mutational
signatures revealed a strong signal for signature AC3 (Figure 1B),
which is associated with breast cancer and colloquially called
“BRCAness,” followed by signature AC1, which is associated with
spontaneous deamination. In contrast, signature AC2 was not
found at all (and therefore not shown in Figure 1B), which would
further strengthen the potential connection to APOBEC cytidine
deaminases, as described above.

Of the most frequently mutated genes recently identified in
breast cancer in general (41) and TNBC in particular (39) (Tp53,
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FIGURE 1 | (A) Circos diagram showing the somatic alterations of the 4T1 cell line compared to wild type BALB/c mice: SNVs (outer circle, gray) and small indels

(red), with point size scaled by variant allele frequency; CNVs (second circle from the outside), log scaled, with gray lines marking CN = 5, 10, and 50; fusion genes

(middle). (B) Mutation signature of 4T1 somatic SNVs. Signatures with a computed exposure value of 0% are not shown.
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Pik3ca, Myc, Ccnd1, Pten, Erbb2, Znf703/Fgfr1 locus, Gata3,
RB1, and Map3k1, Egfr), we only identified mutations in Trp53
(frameshift insertion of “A”) and Pik3cg (synonymous SNV)
which is the catalytic subunit of class I PI3 kinases (similar
to Pik3ca). In addition, we did not find mutations in breast
cancer susceptibility genes Brca1 and Brca2. Further mutations in
cancer-related genes included Nav3 (V1129L), Cenpf (D1327E),
Muc5ac (A429P), Mpp7 (Q158R), Gas1 (G326R), Maged2
(A473S), Dusp1 (C24R), Ros1 (W1875C), Polr2a (M1102I),
Rragd (L385P), and Hoxa9 (insertion of “G” in UTR). Variations
in immune-relevant genes included Tlr8 (R613H), Tlr9 (N332K),
and Lilrb3 (S91R).

Using RNA-Seq data of 4T1 replicates, we identified 12 fusion
events (Table S4), including a fusion of Siva1 and Gas8, one
regulating cell cycle progression/proliferation and apoptosis, the
other being a putative tumor suppressor gene. None of them have
been reported before in breast cancer (44, 45).

MMTV Integration
MMTV is a milk-transmitted retrovirus that is oncogenic
through integration into the host genome, thereby activating
the expression of nearby genes (46). Multiple common insertion
sites (CIS) have been identified and associated with candidate
oncogenes and pathways involved in mammary tumorigenesis,
including the Wnt and Fgf clusters (47, 48). A subset of CIS was
significantly correlated with overexpression and deregulation of
candidate oncogenes (49). We collected a set of 54 candidate
genes for MMTV integration and compared their expression
in 4T1 cells to that in normal mammary gland (Figure S3).
About 68.5% of these genes showed significant down- or
upregulation, while only about 42% of all genes of 4T1 cells
were differentially expressed, suggesting MMTV integration as
a possible cause. However, many pf the 54 candidate genes are
involved in oncogenic pathways, so it is not clear if the observed
differential expression are caused by the integration, potentially
dysregulating a pathway or effect of the dysregulated pathway in
the first place.

Moreover, we had direct evidence from RNA-Seq based
transcriptome assembly of an integration site 5

′

to the Fgfr2
gene (Figure S4). A CIS near Fgfr2 was associated with an
increased copy number and overexpression of Fibroblast growth
factor receptor 2 (Fgfr2) (47). While we just observed a copy
number of four, three of eleven isoforms were significantly
overexpressed in 4T1. Fgfr2 is a transmembrane tyrosine kinase
receptor and its activation triggers a complex signal transduction
network (via e.g., Ras-Raf-Mapk or Pik3-Akt pathway), which
leads to transcription of genes involved in angiogenesis, cell
migration, proliferation, differentiation and survival. There is
evidence of deregulated activation of FGFR signaling in the
pathogenesis of human cancers (46). FGFR2 amplifications
have been found in 10% of gastric cancers (50) and were
also found in a subset of human TNBC patients (39, 51);
FGFR2 amplifications are estimated to occur in ∼4% of TNBC
samples, resulting in constitutive activation of FGFR2 (52).
Increased expression of this gene is associated with poor overall
survival and disease-free survival (53). This amplification is
targetable with high sensitivity to FGFR inhibitors in vitro

(52), an FGFR2-targeting antibody showed potent antitumor
activity against human cancers in pre-clinical studies (54) and
several FGFR tyrosine-kinase inhibitors are in clinical trials
(54–56). However, the contribution of MMTV infection and
initiation to human mammary carcinogenesis in general and
FGFR2 amplification in particular is still highly debated (57).
Of note, Notch4 and Krüppel-like factor 15 (Klf15) have been
shown to be associated with MMTV CIS and although both
genes are expressed in normal murine mammary gland, we
do not find any isoform expressed in 4T1 possibly due to
MMTV integration. Interestingly, while KLF15 has been recently
proposed to be a tumor suppressor in breast cancer (58) and
silencing this transcription factor results in a fitness advantage for
the tumor, Notch-4 is a potent breast oncogene, overexpressed in
TNBC (59) and Notch signaling is involved in mammary gland
tumorigenesis (60).

The 4T1 Transcriptome
Differential expression analysis of 4T1 cell RNA expression vs.
healthy mammary gland tissue RNA revealed 12810 differentially
expressed genes (FDR ≤ 5%, absolute log2 fold-change >1)
out of 29,955 total genes in mm9 (Tables S5, S6). This set of
differentially expressed genes is very similar to differentially
expressed genes in human breast cancer: we compared the gene
sets of two studies comparing TNBC epithelium to adjacent
microdissected stroma (21) and TNBC to non-TNBC cancers
(22). These studies allowed a gene set enrichment test, yielding
p-values of 2.2 × 10−16 and 0.001002 (Fisher’s exact test),
respectively. Next, we compared pathways and gene ontologies
(GO) that were significantly enriched (FDR ≤ 0.05, Table S7) in
4T1 differentially expressed genes to a study including different
TNBC subtypes (20). Here, we only found significant overlap
with top pathways and GO terms reported for subtype “Basal-
like and immune suppressed (BLIS)” (ppathway = 0.04506 and pGO
= 0.0142, Fisher’s exact test). Furthermore, we analyzed RNA-
Seq data of 57 TNBC breast cancer samples from the short read
archive (PRJNA607061) and 66 breast tissue samples from the
GTEx project (Table S8). All analysis steps were performed in
analogy to the analysis of the 4T1 data. Here, we computed a p-
value of 2.2 × 10−16 with Fisher’s exact test when comparing the
sets of differentially expressed genes. Moreover, the mean gene
expression in TNBC is well-correlated to the gene expression in
4T1, as demonstrated by a Pearson’s correlation coefficient of
0.727 (Figure S5).

Figure 2 shows the expression of a selection of relevant genes
discussed below. The murine homologs of the typical genes
associated with TNBC are Esr1, Pgr, and Erbb2. While Esr1 was
about 2-fold downregulated and Pgr showed zero expression,
Erbb2 had a comparable expression in 4T1 vs. the non-cancer
mammary gland samples (about 20 TPM). However, compared
to the ERBB2 expression in the TCGA human breast cancer
(BRCA) cohort, this value was on the lower end of the expression
level spectrum [not shown9 and (61)]. In order to investigate this
detected mRNA expression, we compared the ERBB2, ESR1, and
PGRmRNA expression in available TCGA breast cancer samples

9http://gepia.cancer-pku.cn/detail.php?gene=ERBB2
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FIGURE 2 | Gene expression of selected genes in 4T1 and BALB/c mammary gland. Gene expression was calculated as the sum of the determined transcript

expression values in TPM (transcripts per million) and means of sample duplicates are given in the graph. Red and blue rectangles indicate differential expression

(|log2FC| > 1, FDR ≤ 0.05). 4T1 exhibits characteristic gene expression patterns with respect to TNBC genes and other cancer- and metastasis-related genes.

and grouped the expression values by the annotated result of
the immunohistochemistry (IHC) assay. A principal component
analysis (Figure S6) showed, that mRNA expression can separate
IHC positives from negatives (albeit not perfectly). The data also
showed that a negative IHC result is not necessarily associated
with zero mRNA expression (Figure S7). With copy numbers of
five, the three genes also did not divert form the general genomic
copy number level. Moreover, genes Brca1 and Brca2 were highly
overexpressed.

4T1 is a widely used model for metastatic breast cancer (62)
and consistently, we found known metastasis-associated genes
such as the differentiation antigen Msln (mesothelin), Cdh1,
Sema3e, Gjb3, and Ect2 to be overexpressed. The latter one
is known to be a key factor in progression of breast cancer
(63) as well as in metastasis, and high expression is associated
with poor prognosis for TNBC patients (64, 65). Overexpression
of mesothelin was shown to promote invasion and metastasis
in breast cancer cells (66). Interestingly, we found also High-
mobility group protein HMG-I/HMG-Y (Hmga1) and Hmga-
related sequence 1 (Hmga1-rs1) to be upregulated in 4T1 cells.
Hmga1 is involved in promoting metastatic processes in breast
cancer (67) and it has also been found to stimulate retroviral
integration (68). Hmga2 is a driver of tumor metastasis (69)
and Igf2bp2 is a downstream target gene (70). Both genes
were highly expressed in 4T1 cells. In addition, we found a 6-
fold overexpression of Nephronectin (Npnt) in 4T1 compared
to the normal murine breast samples examined, in which we
detected only weak signals of this gene (22.4 vs. 3.6 TPM).
Npnt plays a role in kidney development, is associated with
embryonal precursors of the urogenital system (71) as well as

with integrin expression (72). High expression levels of Npnt
have been observed in human thyroid (median: 277 TPM),
human blood vessels (e.g., aorta, 200 TPM), human lung (161
TPM) and to a much lesser extent in human mammary tissue
(14 TPM)10. Furthermore, Npnt has been suggested to have a
role in promoting metastasation, as decreased expression in 4T1
tumors significantly inhibited spontaneous metastasis to the lung
(73), further indicating the highly metastatic phenotype of 4T1.
In contrast, we found an extremely low expression of Gas1, which
plays a role in growth suppression. Also, growth factor Vegfa and
growth factor receptor Egfr were downregulated.

Other deregulated genes are also described as being cancer-
related, including Srsf3, which has a proto-oncogenic function
and is frequently upregulated in various types of cancer
(74). FOXM1 is a proto-oncogene involved in regulating the
expression of genes that are specific for the G2/M DNA damage
checkpoint during cell cycle prior to mitosis. Foxm1 has been
found overexpressed in a variety of solid tumors, including breast
cancer (75) and indeed, we also observed a 9-fold increase in
4T1 cells. PLK1 is also involved in the G2/M transition, found
to be significantly overexpressed in TNBC and targeting this
gene has been described as a potential therapeutic option for
TNBC patients (76). Tumor protein D52 (Tpd52) was 6-fold
upregulated, which is in consistence with reports showing high
overexpression in many solid tumors and in particular breast
cancer (77). Of note, we found the colon cancer antigen Gpa33
(78) to be highly expressed in 4T1 (143 TPM), not in normal

10https://gtexportal.org/home/gene/NPNT (accessed January 9, 2020)
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murine breast (<1 TPM) and not in any other human non-
cancer tissue except colon (median: 111 TPM) and small intestine
(median: 75 TPM) (data from11).

Among factors associated with a poor prognosis, proliferation
markers Top2a, Mki67, and Birc5 (79–81) were highly expressed
in 4T1, while almost absent in normal murine breast tissues. Pbk
is also considered a marker for cellular proliferation (82) and is
associated with poorer prognosis in lung cancer (83). Anln is
highly expressed in breast cancer tissues (84) and a marker of
poor prognosis in breast cancer (85) and indeed, we also found
high expression of this gene in 4T1 (131.8 TPM). In addition,
Pigf, which has been shown to enhance breast cancer motility
(86) was overexpressed in 4T1 (42 TPM vs. 32.7 TPM). Genes
related to metabolic regulation, such as Acly and Akt2, were
downregulated. Polypeptide N-acetylgalactosaminyltransferase 3
(Galnt3) was upregulated in 4T1 and overexpression of this gene
is associated with shorter progression-free survival in advanced
ovarian cancer (87).

Moreover, Wnt7a and Wnt7b were upregulated in 4T1 cells,
while other components of the Wnt/β-catenin pathway were
downregulated (Wnt1, Wnt11, and Wnt5a). The role of Wnt10b
in TNBC has been described before (88), indicating a direct
effect on Hmga2 expression (see above). Furthermore, the gene
Ezh2, known for its deregulatory activity of the Wnt pathway,
was upregulated as well. Consequently, we found the Wnt target
genes including the proto-oncogene Myc and the genes Ctnnb1,
Ccnd1, and Fzd6 (Frizzled) to be upregulated (89).

As reported before (90), we found expression of the Murine
Leukemia Virus (MuLV) gene coding for gp70, as well as of
genes of the Murine osteosarcoma virus (NC_001506.1) and
(confirming the genomic findings on MMTV integration) of all
MMTV genes (Table S9).

6-Thioguanine Resistance
Due to the resistance to 6-thioguanine (6-TG) treatment,
metastatic 4T1 cells can be precisely quantified even in distant
organs (6). The cytotoxicity of 6-TG is based on the conversion

of 6-TG into 2
′

-deoxy-6-thioguanosine triphosphate which can
be incorporated into DNA (91). Deficiency in MMR, which is
found in various cancer types (92), is associated with resistance to
6-TG (91). In 4T1, we did observe significant downregulation of
Pold4 only, but none of the other MMR genes (Exo1, Lig1, Mlh1,
Mlh3, Msh2, Msh3, Msh6, Pcna, Pcna-ps2, Pms2, Pold1, Pold2,
Pold3, Rfc1, Rfc2, Rfc3, Rfc4, Rfc5, Rpa1, Rpa2, Rpa3, and Ssbp1;
MSigDB: C2 curated gene sets, KEGG_MISMATCH_REPAIR,
mouse orthologs obtained from12) at mRNA level (Table S6).
Moreover, no non-synonymous SNVs or indels were detected
in these genes, which might have impaired their function. In
addition, mutational signatures AC6 and AC20 (associated with
defective MMR) are present, but with relatively weak signals of
about 5% and less (Figure 1B). Signatures AC15 and AC26 (also
associated with defective MMR) are not detected. Diouf et al.
(93) observed in human leukemia cells that MMR deficiency and
thus an increased resistance to thiopurines can also result from a

11https://gtexportal.org/home/gene/GPA33 (accessed January 9, 2020)
12http://bioinf.wehi.edu.au/software/MSigDB/

deregulated MSH2 degradation. While we again did not detect
any mutations in the genes involved in regulating the stability
of MSH2 (Mtor, Herc1, Prkcz, and Pik3c2b), we found Pik3c2b
to be downregulated (Table S6). As the knockdown of PIK3C2B
in human leukemia CCRF-CEM cells decreased sensitivity to 6-
TG in comparison to control (93), lacking or reduced expression
of Pik3c2b mRNA in 4T1 might explain the resistance to 6-
TG treatment.

MHC Expression
The key players of the mammalian adaptive immune system are
the major histocompatibility complex (MHC) molecules with
the primary task to bind and present self, abnormal self, and
foreign peptides derived from intracellular (MHC class I) or
from extracellular proteins (MHC class II) on the surface of
nucleated cells for recognition by T lymphocytes. Novel cancer
immunotherapy concepts target tumor-specific antigens (either
tumor-associated antigens or neo-epitopes) presented by MHC
molecules of tumor cells. In general, non-cancer murine tissues
show variable expression of MHC class I and class II, with
lymphatic organs (i.e., lymph node, spleen) showing highest
abundance ofMHC transcripts and brain having the lowestMHC
expression (Figure 3), which is in agreement with expression
patterns of the human MHC system (94).

We confirmed that 4T1 cells have the same class I MHC
haplotype as the parental BALB/c mice: H-2Dd, H-2Kd, and
H-2Ld. MHC class II could not be typed from RNA-Seq reads
due to lack of expression. In 4T1, we found MHC class I
and Ib loci to be expressed at comparable levels to normal
(non-lymphatic) tissues (Figure 3, Table S10). In addition, β2-
microglobulin (B2m), essential component of the MHC class I
complex, and members of the MHC class I antigen presenting
pathway were expressed (Figure S8). This suggests that MHC
class I antigen presentation is functional and thus 4T1 cells are
capable of presenting peptides and neo-epitopes to T effector
cells. In contrast, 4T1 cells expressed neither MHC class II
nor the MHC class II master regulator and transcriptional
coactivator Ciita [Figure 3, Figure S8; (95)]. Both findings
suggest that 4T1 cells do not have functional MHC class II
antigen presentation.

4T1 Neoantigens
To investigate the mutations with regard to their potential to
elicit immune responses in vivo, experiments in mice were
conducted. In a previous study (34), we already examined 38
SNVs detected in the 4T1-luc2-tdtomato mammary carcinoma
(4T1-Luc) cell line. Thirty-six of these were also present in the
WT 4T1 cell line, 16 of which were immunogenic. Based on
the subsequent re-analysis of WT 4T1, we selected additional
eleven SNVs and two indels for immunogenicity assessment
(Figure 4A). This selection was done by filtering the available
set of potential neoantigens in order to enrich for likely
immunogenic peptide sequences (see Methods). To this end,
a vaccine for each of the newly selected 13 mutations was
engineered using antigen-encoding pharmacologically optimized
lipoplexed RNA as vaccine format. As before, SNVs were
flanked by 13 amino acids of WT sequence, in-frame indel
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FIGURE 3 | Expression of MHC genes in 4T1 cells and Balb/C tissue samples. 4T1_1 and 4T1_2 indicate the duplicate 4T1 RNA-Seq libraries.

mutations were flanked by 15 amino acids of WT sequence and
frameshift mutations were investigated covering 15 WT amino
acids upstream of the mutations as well as the whole sequence
of new amino acids until reaching a stop codon. Mice (n =

3–5) were immunized intravenously three times within a 2-
week timeframe. IFN-γ ELISpot of splenocytes stimulated with
overlapping 15-mer peptides covering the respective vaccinated
sequence was performed 5 days after the last immunization.
With this, we found immune responses against additional six
SNVs and one deletion (see Figure 4B for the results on the

indels, Table S11 summarizes all immune responses). In total,

we can thus report 22 SNVs and one deletion identified in 4T1

triggering immune responses in immunized mice. Of note, only
four and 14 of these were derived from SNVs already reported

before (37, 38). For a subset of 15 SNVs the WT counterpart
was tested, which revealed that 10 responses were clearly specific
for the mutated sequence. As already observed (34), most of
the reactivities were elicited by CD4+ T cells (15 out of 21
analyzed mutations). Two SNVs were targeted by CD4+ and
CD8+ T cells.

CONCLUSION

The murine mammary cancer cell line 4T1 is one of the most
often used model systems for breast cancer and in particular
TNBC. Here, we could confirm that 4T1 indeed resembles
metastatic TNBC at the transcriptional level with respect to
key markers Esr1, Erbb2, and Pgr. In addition, compared to
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FIGURE 4 | (A) Numerical overview of selected neoantigen candidates for immunogenicity testing. 22 out of 49 assessed targets were immunogenic.

(B) Immunogenicity testing of indels. Splenocytes of immunized mice (n = 3 per indel) were tested 5 days after the last immunization via IFN-γ ELISpot for recognition

of overlapping 15-mer peptides covering the complete 4T1IND01 and 4T1IND02 sequence as indicated below the graphs (11 amino acid overlap, new amino acids

are highlighted in red). Columns indicate mean of spot counts. Peptide IND2.8 elicited IFN-γ spots >2-fold over background (dotted line, medium control).

human TNBC data, we found good concordance on the level
of differentially expressed genes and pathways and a reasonable
correlation of raw expression values. The expression profile
was in agreement with the metastatic phenotype of 4T1, as
we found Msln, Ect2, and Plk1, and other genes associated
to metastasis to be highly overexpressed in comparison to
normal mammary gland. As described above, also a number of
genes involved in proliferation and survival were deregulated.
Moreover, it is known that the Wnt/β-catenin (Ctnnb1) pathway
plays an important role in human breast cancers (96) with high
activation rates and association with a poor prognosis (97). Some
components of this pathway including Wnt target genes were
upregulated in 4T1 cells. Overall, the observed profile reflected
the complex interplay of various factors of tumorigenesis- and
metastasis-driving signaling and allows for further mode-of-
action investigation in the 4T1 tumor model.

On themutation level, the raw numbers of mutations compare
well against the CT26 colon cancer model. CT26 has 3,023 SNVs
and 362 short indels, and in 4T1 we found an order of magnitude
less variants (505 SNVs and 20 short indels). This is a similar
relationship as observed for human colorectal and breast cancer
(31) and supports previous findings (37, 38) as mentioned above.
Differences in the absolute numbers in comparison to these
reports might be due to genetic diversification of in vitro cell lines
investigated at different laboratories at differing passage numbers
(98) or different sequencing and mutation calling strategies.

Here and in a previous study (34), we determined in vivo
immune responses against 22 SNVs (out of 49 tested, 45%) as
well as one deletion (out of two indels tested) upon vaccination of
BALB/c mice and 10 mutations (out of 15 immunogenic SNVs)
showed mutation specificity. Although we did not examine
all possible candidate neoantigens, the low mutational burden
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and the similarity to the basal-like and immune suppressed
TNBC subtype suggest that 4T1 is a tumor model exhibiting
relatively low immunogenicity. This is in agreement with
others (37), while different studies argue the opposite, showing
upregulation of many immune activation genes (38, 99) and
thus immune cell infiltration in transplanted 4T1 tumors. Our
4T1 RNA-Seq data, however, was generated from the pure cell
line. Accordingly, we could not see upregulation of immune-
related genes. Nonetheless, 4T1 cells can secrete a plethora
of inflammatory mediators and thereby modulate not only
lymphocyte-mediated immune responses against the tumor, but
also the innate microbial host defense (100–102). In future
studies, the identified fusion transcripts might also be viable and
interesting candidates for immunogenicity testing.

Besides the expression of MMTV at the RNA level and
the deregulation of known genes with nearby insertion sites,
we found direct evidence of MMTV integration near the gene
Fgfr2. Combined with the relatively low mutational burden,
we hypothesize that the MMTV infection and integration is
the major genomic change causing eventually the TNBC-like
phenotype. Interestingly, despite no observed somatic mutations
in Brca1 or Brca2, a “BRCAness” mutation signature could be
found (Figure 1B, signature AC3).

A very recent publication (38) underlined the importance
of profiling tumor models to appropriately translate pre-
clinical findings. The here presented genome, transcriptome,
and immunome data serves as a baseline for further
studies, examining e.g., tumor-host interactions in terms of
immunogenicity and TNBC in general. Although the data
sources are highly heterogeneous (resulting from different
studies and sequencing experiments), a distinct overlap between
our qualitative and quantitative findings and studies on human
TNBC can be found and confirms our approach. Together, our
study supports the rational design of pre-clinical studies with an
important and established tumor model.
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Figure S1 | Comparison of DNA and RNA variant allele frequency (VAF) in 4T1

cells. The Pearson correlation coefficient is 0.977.

Figure S2 | Abundance of nucleotide substitutions in 4T1 cells with respect to

nucleotide triplets.

Figure S3 | Differential expression of MMTV integration effector genes. Colored

dots indicate differential expression in 4T1 vs. BALB/c mammary gland. Red gene

labels indicate genes that are described as upregulated in the literature.

Figure S4 | Schematic view of proposed MMTV integration in Fgfr2 gene. Upper

panel shows a UCSC Genome Browser view of an alignment of assembled

sequence c75264_g4_i1 to the mm9 genome. The middle part shows the

assembled sequence (blue) and the part mapping to Fgfr2 (red). Numbers indicate

parts of the sequence mapping to Fgfr2 (red) and MMTV (green). The lower panel

shows a schematic of Betaretrovirus genome, for which MMTV is a reference

strain (taken from https://viralzone.expasy.org/66).

Figure S5 | Mean gene expression of TNBC plotted against mean gene

expression in orthologous genes of 4T1. Counts per million (cmp) were computed

by edgeR.

Figure S6 | Scatterplot of a principal component analysis of TCGA BRCA gene

expression of genes ERBB2, ESR1, and PGR. Shown are the first two principal

components (PC1 and PC2). Ellipses indicate normal-probability contours.

Figure S7 | Boxplot of TCGA BRCA gene expression of genes ERBB2, ESR1,

and PGR, separated by TNBC status. Expression on y-axis is given as log2
(FPKM+1) units.

Figure S8 | Gene expression of members of the MHC class I and II antigen

presenting pathway in 4T1 and BALB/c mammary gland.

Table S1 | Raw Control-FREEC output (sheet 1) and predicted absolute gene

copy numbers of 4T1 genes (sheet 2).

Table S2 | Somatic SNVs in 4T1, including annotation on amino acid

substitutions, affected genes/transcripts, expression of these, and coverage/VAF

in the DNA/RNA NGS libraries.

Table S3 | Somatic INDELs in 4T1, including annotation on frameshift, affected

genes/transcripts and coverage/VAF in the DNA/RNA NGS libraries. A VAF of −1

means “not covered,” while a VAF of 0 indicates coverage but absence of the

variant allele.
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Table S4 | Fusion genes in 4T1, including predicted positions of breakpoints,

number of junction reads, and spanning read pairs and the program that detected

a fusion.

Table S5 | Gene expression in 4T1 and BALB/c mammary gland in TPM.

Table S6 | Differential gene expression in 4T1 vs. BALB/c mammary gland,

showing log fold change, FDR, and baseline expression values.

Table S7 | Gene set and pathway enrichment in differentially expressed genes of

4T1 cells for upregulated and downregulated genes in GO gene sets and KEGG

pathways, respectively (sheets are labeled “up GO”, “up KEGG”, “down GO”, and

“down KEGG”, respectively).

Table S8 | Differential gene expression in human TNBC vs. breast tissue, showing

log fold change, FDR and baseline expression values.

Table S9 | Expression in RPKM of MMTV genes for two replicates of 4T1

RNA-Seq libraries.

Table S10 | Expression values in TPM of MHC genes in 4T1 and BALB/c tissues.

The used reference sequences from the UCSC known genes or Genbank are

also listed.

Table S11 | Results of immunogenicity testing, including details on mutation,

amino acid substitution, the result of the ELISpot assay, the subtype of the T-cell

response, and the specificity when compared to a WT control.
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